
1

Seventh FRAMEWORK PROGRAMME
FP7-ICT-2007-2 - ICT-2007-1.6

New Paradigms and Experimental Facilities

SPECIFIC TARGETED RESEARCH OR INNOVATION
PROJECT

Deliverable D3.4

“Design and Implementation of Technical
Objective 2 (Path availability estimation, network

recovery and resiliency techniques, and
profile-based accountability)”

Project description

Project acronym: ECODE
Project full title: Experimental Cognitive Distributed Engine
Grant Agreement no.: 223936

Document Properties

Number: FP7-ICT-2007-2-1.6-223936-D3.4
Title: Design and Implementation of Technical Objective 2
Responsible: Philippe Owezarski
Editor(s): Guy Leduc
Contributor(s): François Cantin, Didier Colle, Goutam Das, Benoit Donnet,
Pierre Geurts, Guy Leduc, Yongjun Liao, Juan Narino, Dimitri Papadimitriou,
Damien Saucez, Wouter Tavernier, Ing-Jyh Tsang, Werner Van Leekwijck
Dissemination level: Public (PU)
Date of preparation: 29th Oct. 2009
Version: 1.0

2

D3.4 - Executive Summary

This deliverable is part of WP3 (Cognitive network and system experimentation).
The feasibility, benefits and applicability of introducing a cognitive engine in the ECODE
architecture are experimented using a number of use cases covering different problem
areas identified as Internet architectural and design challenges.

In particular we address techniques for path availability estimation, for improving
network recovery and resiliency, and profile-based accountability. The following three
use cases are studied in-depth:

• Path availability: the goal is to design and experiment techniques, embedded in
our so-called IDIPS server, to rank internet paths based on their characteristics,
such as delays, and available throughput. To this end, on-line machine learning
techniques are used to estimate future path characteristics based on past measure-
ments, in order to reduce the future measurement load. Machine learning tech-
niques are also used to Improve Internet Coordinate Systems to better estimate
delays between nodes with scalable active delay measurements.

• Network recovery and resiliency: the goal is to reduce the recovery time and
increase the recoverability, when routes are updated in a network. To this end,
we design and experiment machine learning techniques to minimize packet loss
during rerouting and infer SRLGs (Shared Risk Link Groups, i.e. sets of links
that can fail all together) in networks, and anticipate their occurrence very early.

• Profile-based accountability: the goal is to infer the demand subscribers are re-
questing from the network, so that the network resources can be fairly allocated
and accountability properly imposed respecting the contract subscribers have with
their operator. To this end, we design and experiment machine learning techniques
to cluster customer profiles based on their network resource demands, and to clas-
sify customers according to the learned profiles.

Based on this experience, we describe how we currently view the mapping of these
use cases onto the anticipated ECODE architecture designed earlier. In particular we
show how the functionalities of all the use cases are split among the Routing Engine
(RE), Forwarding Engine (FE) and Machine Learning Engine (MLE) of the architecture,
and which message exchanges are necessary among these components.

From a research perspective, the main results of this deliverable can be summarized
as follows:

• Measuring a path performance according to one or several metrics, such as delay
or bandwidth, is becoming more and more popular for applications. However,
constantly probing the network is not suitable. To make measurements more scal-
able, the notion of clustering has emerged. We demonstrate in [2] that clustering
can limit the measurement overhead in such a context without loosing too much
accuracy. The paper shows that measurement reduction can be observed when
vantage points collaborate and use clustering to estimate path performance. The
paper also shows how effective is the overhead reduction and what is the impact in

3

term of measurement accuracy. In addition, in [1], we demonstrate how to reduce
the path performance metric measurements by applying machine learning tech-
niques. We express the problem as a time series regression problem and propose
several adaptative models for predicting those metrics. Based on a large dataset
collected through the PlanetLab testbed, we evaluate our models and demonstrate
their efficiency.

• When network nodes run an Internet Coordinate System (ICS), the measured dis-
tances (typically delays) between some of pairs of nodes are embedded into a met-
ric space (or coordinate system). When the coordinates of the nodes are known,
the prediction of the distances (delays) between two nodes is a straightforward ap-
plication of a distance function where no explicit communication between them is
required. This significantly reduces the overhead of active probing and largely im-
proves the efficiency of the network. We have used Machine Learning techniques
to improve the accuracy of an ICS [3, 4, 5]. We have derived automatically a
criterion that can be used by nodes to better select their neighbours in the ICS
and thereby reduce the impact of Triangular Inequality Violations (TIVs), which
are detrimental to an ICS. The knowledge of estimated delays between nodes can
also be useful to select better paths for real-time applications. We have also pro-
posed some methods that rely on the nodes running an ICS to detect useful routing
shortcuts in networks [6].

• Upon failures the IP router must update its routing and forwarding tables, which
may take some time and lead to packet losses. We have evaluated traffic-informed
router update models using strategies with either fixed or optimized variable sizes
for the update-distribution batches. The resulting models were implemented in
a simulation environment and were quantitatively characterized. Depending on
the context, we showed that the formulated strategies can result into a decrease of
packet loss of 10 to 80 percent using small router process quantums [7]. Because a
traffic-informed router update models can only be effective if the traffic statistics
that are being used are accurate, the work is being extended such as to predict
the short-term trend of aggregated network traffic flows. Currently, experiments
are being carried out using Self-Organizing Maps (SOMs), Feed-Forward Neural
Networks (FFNN) and Support Vector Regression (SVR) techniques.

• IP routers exchange link state advertisements (LSAs) to know about network fail-
ures and to initiate recalculation of routing paths in case of network failures. Path
computation and routing table updates takes time and induce packet loss in the
network. On the other hand, by design, IP networks have Shared Risk Link
Groups (SRLGs) that might give several failure indications. Current OSPF pro-
tocol cannot identify SRLGs and separately responds to each failure notification,
which leads to higher packet losses. Within the ECODE project framework, a pro-
cess is being developed to identify the SRLGs from the time sequences of LSAs
that arrive in the process of failures. Here a router identifies an SRLG locally
and reduces protection switching time by simultaneously updating the forward-
ing table for all the links that fail under the same SRLG. A simple Bayesian net-
work based approach to model the SRLG identification have been developed. The
Bayesian network based model includes a state transition approach that can per-

4

form online learning and infers probabilistic determination procedure for SRLGs.
Further the study of the covariance among the LSA inter arrival times are being
considered to enhance the probability based state space Bayesian network model
and to include temporal data to infer the state transition probabilities. A realistic
simulation scenario using GTNetS is being carried out.

• The aim of profile-based accountability is to infer the demand subscribers are re-
questing from the network, so that the network resources can be fairly allocated
and accountability properly imposed respecting the contract subscribers have with
their operator. There are two major tasks expected from the machine learning
system, which will define two types of output, one for the profile learning stage
and the second for the profile prediction stage, or in our case the profile clas-
sification stage. Profile learning refers to the process of defining or categoriz-
ing profiles. Each profile indicates specific network traffic behavior associated
with the usage and demand on the network resources. Profile prediction refers
to the classification process of users according to the learned profiles. The out-
put of this stage should be a classification decision to one of the possible classes.
Two distinct machine learning techniques are considered. A clustering technique
based on the Fuzzy K-Mean algorithm is used to detect and identify common-
alities in users/subscribers actions (unsupervised learning). An Hidden Markov
Model (HMM) is learned for the supervised classification of subscribers/users
(supervised learning).

List of Authors

UCL Benoit Donnet, Juan Narino, Damien Saucez
ULg François Cantin, Pierre Geurts, Guy Leduc, Yongjun Liao
IBBT Didier Colle, Goutam Das, Wouter Tavernier
ALB Dimitri Papadimitriou, Ing-Jyh Tsang, Werner Van Leekwijck

List of Figures

2.1 Overview of the IDIPS service . 6

2.2 IDIPS architecture . 10

2.3 Box Plots under MAPE error for delay and throughput prediction 13

2.4 Median of MAPE loss for delay and throughput for different Models . . 14

3.1 Embedding three nodes that cannot form a valid triangle into a metric
space. 17

3.2 Top three levels of the decision trees built on P2psim and Meridian data
set. The colour in the rectangular boxes reflects the proportions of TIV
and Non-TIV classes. 21

3.3 ROC curves of the decision trees, obtained by varying the threshold of
the probability of TIV, and of three variables including OREE, REE
and std_REE, obtained by thresholding the values of the correspond-
ing variables. 22

3.4 Distribution of TIV severity . 24

3.5 Nearest neighbor selection penalty . 24

4.1 The router update process . 28

4.2 Timeline of the router update process 30

4.3 Timeline for router updates having a variable xu 32

4.4 Decrease in packet loss vs. (minimal) quantum size 36

4.5 Example network with links A, B, ..., I 38

4.6 LS update pattern with respect to time 38

4.7 AHBT - Example machine learning steps for SRLG 39

4.8 Inter arrival time depiction . 40

5.1 Structure of the D-ITG modules and flow operation 44

5.2 Diagram of the subscribers’ action profiles over time 45

5.3 Diagram of the subscribers’ profiles inferred from a time sequence of
action profiles . 45

5.4 Experimental setup . 46

5

6 LIST OF FIGURES

6.1 ECODE component framework . 50

6.2 IDIPS integration into the ECODE architecture 52

6.3 Integration of the router update process in the ECODE component frame-
work . 54

Table of contents

1 Introduction 1
1.1 Scope of Deliverable . 1

1.2 Structure of Document . 3

2 Intelligent Path Ranking Using IDIPS 5
2.1 Problem Formalization . 6

2.2 Machine Learning Techniques . 6

2.2.1 Standard Models . 7

2.2.1.1 ARMA Model . 7

2.2.1.2 State Space Model 7

2.2.1.3 Support Vector Regression (SVR) Model 7

2.2.1.4 Joint Support Vector Regression 8

2.2.2 Model Update Methods . 8

2.2.3 State Space Model . 8

2.2.3.1 ARMA Model . 9

2.2.3.2 SVM Model . 9

2.3 IDIPS Implementation . 9

2.3.1 Path Information Collector . 10

2.3.2 Knowledge Base . 10

2.3.3 Decision Engine . 11

2.4 Experimentation . 11

2.4.1 Data Collection . 11

2.4.2 Crossvalidation . 12

2.4.3 Error Measurements . 12

2.4.4 Results . 12

2.5 Future Work . 14

3 Delay estimation and delay-based path selection and routing 17
3.1 Problem Formalization . 18

i

3.1.1 Improving the ICS . 18

3.1.2 Finding routing shortcuts . 19

3.2 Machine Learning techniques/algorithms used 20

3.2.1 Methodology: Scenarios and Tools for Learning 20

3.2.2 Learnt model and discriminative variables 20

3.2.3 Evaluation of the learnt model 21

3.3 Implementation . 22

3.3.1 Improving the ICS . 22

3.3.2 Finding routing shortcuts . 22

3.4 Experimentation and evaluation . 23

3.4.1 Improved ICS . 23

3.4.2 Finding shortcuts . 24

3.5 Conclusion and Future Work . 26

4 Routing resilience use cases 27
4.1 Minimizing packet loss during re-routing 28

4.1.1 Formalisation of the technical problem 28

4.1.2 Machine Learning techniques/algorithms used 31

4.1.3 Implementation . 34

4.1.4 Experimentation . 35

4.2 Data mining with OSPF updates to identify shared risk link group (SRLG) 36

4.2.1 Formalization of the technical problem 36

4.2.2 Machine learning technique/algorithm used 37

5 Profile-based accountability 41
5.1 Formalization of the technical problem 41

5.2 Machine Learning . 42

5.2.1 Fuzzy K-Mean . 42

5.2.2 Hidden Markov Model . 43

5.3 Implementation . 44

5.4 Experimentation . 45

5.4.1 Performance Objectives and Evaluation Criteria 46

5.4.2 Methodology: Scenarios and Tools 46

5.4.3 Experimental Results . 47

5.4.4 Future Works . 47

6 Recommendations for integration into common ECODE architecture 49
6.1 ECODE Functional Architecture Reminder 49

ii

6.2 Use case b1: Path availability . 52

6.2.1 Intelligent Path Ranking Using IDIPS 52

6.2.2 Delay estimation and delay-based path selection and routing . . 53

6.3 Use case b2: Routing resilience . 53

6.3.1 Minimizing packet loss during re-routing 53

6.3.2 Data mining with OSPF updates to identify shared risk link
group (SRLG) . 55

6.4 Use case b3: Profile-based accountability 55

7 Conclusion 57

References 60

iii

iv

Chapter 1

Introduction

1.1 Scope of Deliverable

This deliverable is part of WP3 (Cognitive network and system experimentation),
which is an experimental work package that started at M03. The feasibility, benefits and
applicability of introducing a cognitive engine in the network elements are experimented
using a number of use cases covering different problem areas identified as Internet archi-
tectural and design challenges (manageability, security, availability, routing scalability
and quality). WP3 comprises three tasks (T3.1, T3.2, and T3.3) that are dedicated to the
experimental phase 1. Each of these tasks is associated with the networking scientific
and technical objectives, including prototype development, setting up the test environ-
ment and performing the actual testing. Three types of hands-on experimental tasks are
planned in this work package:

• T3.1: Experimentation on Technical Objective 1 (TO1) addressing adaptive traf-
fic sampling and management, path performance monitoring, and intrusion and
attack/anomaly detection techniques;

• T3.2: Experimentation on Technical Objective 2 (TO2) addressing techniques for
path availability estimation, for improving network recovery and resiliency, and
profile-based accountability;

• T3.3: Experimentation on Technical Objective 3 (TO3) addressing techniques to
improve routing system scalability and quality (convergence, stability/robustness,
and stretch).

For each Technical Objective (and in particular for TO2, which is the topic of this
deliverable), use-case driven experimentation are performed on the cognitive engine
(network and system architecture) elaborated in WP2. The experimentation of the dif-
ferent networking scientific and technical objectives will use different test settings and
running conditions. Each experiment will be structured around the following approach:

• Formalisation of the technical problem addressed by the use case;

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 1

• Description of the machine learning techniques and/or algorithms used;

• Description of the implementation of the use case so far;

• Description of the experimental setup: Performance objectives, Evaluation crite-
ria, Methodology;

• Recommendations for the integration of the use case into the common ECODE
architecture ;

This deliverable D3.4 focuses on Technical Objective 2 (TO2), which is composed
of the following three use cases:

b1) Path availability (UCL and ULg)

• Design and experiment techniques, embedded in our so-called IDIPS server, to
rank internet paths based on their characteristics, such as delays, and available
throughput;

• Find and experiment on-line machine learning techniques to estimate future path
characteristics based on past measurements, in order to reduce the future mea-
surement load;

• Use machine learning techniques to Improve Internet Coordinate Systems to bet-
ter estimate delays between nodes with scalable active delay measurements;

• Design and experiment criteria, based on node coordinates and some measured
delays, to discover appropriate routing shortcuts

b2) Network recovery and resiliency (IBBT and ALB)

• Reduce the recovery time and increase the recoverability, when routes are updated
in a network;

• Design and experiment machine learning techniques to minimize packet loss dur-
ing rerouting;

• Design and experiment machine learning techniques to infer SRLGs (Shared Risk
Link Groups) in networks, i.e. sets of links that can fail all together;

• Design and experiment machine learning techniques to anticipate the occurrence
of SRLGs very early.

b3) Profile-based accountability (ALB)

• Infer the demand subscribers are requesting from the network, so that the network
resources can be fairly allocated and accountability properly imposed respecting
the contract subscribers have with their operator

• Design and experiment machine learning techniques to cluster customer profiles
based on their network resource demands

• Design and experiment machine learning techniques to classify customers accord-
ing to the learned profiles

1.2 Structure of Document

The path availabity use case (b1) is addressed in chapters 2 and 3. The former
presents the IDIPS architecture proposed for intelligent ranking of Internet paths. In this
context, machine learning techniques are designed to estimate future path characteristics
based on past measurements, in order to reduce the future measurement load. Chapter
3 complements this approach by adding an Internet Coordinate System in the routing
architecture, with the goal of finding low delay paths in a scalable manner.

Chapter 4 addresses the network recovery and resiliency use case (b2). Two distinct
problems are solved: firstly, packet loss during re-routing is minimized by accelerating
the updates of the router FIBs (Forwarding Information Base). This is done by updating
the major flows first and by grouping the updates into batches of optimal sizes. Sec-
ondly, routing update messages are used to identify shared risk link groups (SRLGs)
and thereby to anticipate their occurrence very early, e.g. by deciding whether a link
failure is likely to be isolated or followed by all the other link failures in a SRLG.

Chapter 5 addresses profile-based accountability, whose aim is to infer the demand
subscribers are requesting from the network, so that the network resources can be fairly
allocated and accountability properly imposed respecting the contract subscribers have
with their operator. For this purpose, two distinct machine learning techniques are con-
sidered. A clustering technique based on the Fuzzy K-Mean algorithm is used to de-
tect and identify commonalities in users/subscribers actions (unsupervised learning).
A Hidden Markov Model (HMM) is learned for the supervised classification of sub-
scribers/users (supervised learning).

In chapter 6 we describe how we currently view the mapping of all the use cases
described so far onto this general architecture that was described in deliverable D2.1.
In particular we show how their functionality is split among the Routing Engine (RE),
Forwarding Engine (FE) and Machine Learning Engine (MLE) and which message ex-
changes are necessary among them.

Chapter 7 concludes this deliverable. It summarizes the main contributions and
describes future work.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 3

Chapter 2

Intelligent Path Ranking Using IDIPS

ISP-Driven Informed Path Selection (IDIPS) is a service aiming at ranking paths
according to their performance. Fig. 2.1 presents an IDIPS service overview. To be
able to make path ranking, IDIPS needs, from one hand, to collect path performance
information (i.e., top of Fig. 2.1), store it, and, on the other hand, collect path ranking
requests and process them with a ranking algorithm.

The collection part of IDIPS works with path information. A path is defined by a
(source, destination)-pair and information are divided into two categories: (i) admin-
istrative and (ii) measurement. Administrative information is related to the network
management like network policies and billing, but also routing information such as
BGP feeds or IGP topologies. On the other hand, measurement information dynami-
cally evolves with the traffic and refers, for instance, to the delay or bandwidth.

Collected information is abstracted and stored in a unified format within IDIPS for
later use.

When a ranking request arrives, IDIPS computes a cost for each feasible path in
the request. It then groups paths of similar costs within the same rank and informs the
requester of the path ranks.

The machine learning aspect related to IDIPS concerns the path information collec-
tion. This collect might be done in two ways: actively (i.e., probes are injected into
the network) or passively (i.e., information is silently collected). As active probing is
intrusive and resource greedy, we propose to consider machine learning techniques to
infer active probing results without injecting traffic (or at least reducing the amount of
traffic) in the network.

Sec. 2.1 formalizes the problem of path performance prediction as a time series
problem; Sec. 2.2 explains our machine learning techniques for predicting path perfor-
mance; Sec. 2.3 explains how we could implement the IDIPS service; Sec. 2.4 evaluates
the accuracy of our machine learning techniques; finally, Sec. 2.5 concludes this chapter
by discussing the future directions.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 5

Figure 2.1: Overview of the IDIPS service

2.1 Problem Formalization

Prediction of Path Performance Metrics (PPM) is a topic that has been explored in
the past [8, 9, 10]. However, how to adapt to the network dynamic conditions such that
models reflect this is still an open question. Furthermore, how to update the models and
the effects of using partial updates, that is, how to handle predictions when new data
for model update is not periodically available are topics that have not been throughly
explored in PPM prediction literature.

The main idea is to infer or learn different statistical properties from the time series
data. After model parameters have been found, predictions of the PPMs can be made.
Statistically, predicting future PPMs from past measurements can be stated, in machine
learning terms, as a time series regression problem. The training dataset D consists of
measurements from the previous time step t− 1 back to some index t− k in the past:

D = {yt−1, yt−2, . . . , yt−k} (2.1)

A model of this time series aims at predicting the next PPM value yt and, possibly,
additional values in the future yt+1, yt+2,

2.2 Machine Learning Techniques

Machine Learning consists of algorithms and techniques that aim at recognizing
and learning automatically patterns from the data. In the context of PPM prediction, the
main goal is to estimate models for accurate prediction of PPMs. Statistical models are
fit from the data, and its different parameters are estimated. Furthermore, adaptivity was
included in the models, in order to accommodate changing network conditions.

2.2.1 Standard Models

2.2.1.1 ARMA Model

An AutoRegressive Moving Average (ARMA) model [11] describes a time series as a
linear combination of previous samples plus Gaussian noise, thus constructing a model
for forecasting. The amount of p previous samples used is called the autoregression
order. The q noise samples, used in the model are called the moving average order. A
general ARMA(p, q) model is described by the following equation:

yt = α1yt−1 + · · ·+ αpyt−p + φ1εt−1 + · · ·+ φ1εt−q + et (2.2)

where εi ∼ N(0, σ2), et ∼ N(0, σ2), p indicates the order of the auto-regression, and
q the order of the moving average. For simplicity, q = 0 is assumed for the rest of this
paper.

The auto-regressive order is chosen by doing rolling crossvalidation for each of the
involved series for a particular loss function.

2.2.1.2 State Space Model

Linear Dynamical systems (LDS) can be described as a system of joint linear equa-
tions, describing their dynamical evolution and how these observations are made [12].
A state space representation of an LDS is modeled as the evolution of nonobservable
variables ~x and observable variables ~y. The LDS is expressed as:

~yt = A~xt + ~vt (2.3)
~xt = B~xt−1 + ~wt (2.4)

where ~vt ∼ N(0, R) and ~wt ∼ N(0, Q) model noise either in the transition or in the
actual measurement. The link between observed variables ~yt and hidden variables ~xt is
given by the matrix A. The matrix B describes the dynamical evolution of the system
in the hidden or dynamical space. The parameters A,B, R,Q are estimated from the
collected dataset D, using an expectation maximization (EM) algorithm for LDS [13].

Once the model parameters have been found, there are two possible ways to predict
data. The first one consists in initializing the LDS linear system equations by using as
initial vector the last observation available in the training set. The second way, allowing
inclusion of new data in a natural way, is by use of Kalman filtering [14].

2.2.1.3 Support Vector Regression (SVR) Model

Support Vector Machines (SVM) have been used for classification, regression, and
time series analysis [15]. SVR intends to find a function f(~y), by solving an optimization
problem, that calculates the best function fitting a regression hyperplane that passes
within a ε distance from certain training samples (support vectors). An epsilon-loss

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 7

function is used to generate an “ε tube”. The regression function f(~y) passes through
the center of the tube. After defining a Lagrangian and solving for the dual variables
α’s, the regression function is defined as:

~̂yt = f(~y) =
l∑

i=1

(αi − α∗i)k(~yi, ~y) + b (2.5)

~̂yt = {~yt−1, ~yt−2, · · · , ~yt−k} (2.6)

For dynamical systems, we can use the previous samples as the input to the regres-
sion function [15]. The input data ~y used for the prediction at a given time t is a vector
representing the current data context: y = [yt−1 . . . yt−p]′ the p previous measurements.
By analogy with an AR model, we refer to p as the SVM model order. The input vector
~y is projected to a higher dimensional space through a non-linear mapping Φ(y). Lin-
ear modeling is simpler in such a higher dimensional space, and equals to non-linear
modeling in the original low dimensional space [15].

In all SVM experiments, the radial basis function kernel is used. This kernel is
described by k(yi, y) = γ exp(||yi − y||2) where yi is the input vector used to represent
some past measurements in the training, y represents the current context as above, and
γ is a meta-parameter known as the kernel width. The kernel width and the amount of
previous measurements used as input vector is found by using crossvalidation.

2.2.1.4 Joint Support Vector Regression

As seen in the previous section, the SVR accepts as input a vector that can contain n
dimensions. In order to do joint data prediction, a vector containing the previous sam-
ples for delay and throughput, ~y = {dt−1, . . . , dt−k, tht−1, . . . , tht−k} and as “labels”
either delay or throughput is used. All other details regarding this method are identi-
cal to the case of SVR. For the Joint SVR method, the amount of previous necessary
samples and the width of the kernel were also found by rolling crossvalidation.

2.2.2 Model Update Methods

2.2.3 State Space Model

In order to use new available data for state space model predictions, an algorithm
called Kalman filter can be used [14]. A Kalman filter takes new available data, com-
bines it with the previous prediction and makes an update to the state vector (hidden
vector), thus, updating the state space model in an automatic way. Kalman filtering
consists of two steps: prediction and update.

In the prediction step, the state equation is used to predict a new state. Then, the
observation equation can be used to predict the new value. Once a new observation

becomes available, the system state is corrected accordingly to the new sample. The
state vector and the covariance matrix are also updated for future predictions (update
step). The state is corrected by a variable amount K, which minimizes the difference
between the predicted state and the actual state, in a mean square sense.

Model updating is natural with Kalman filtering. If new data is available, the “prediction-
update” algorithm is applied, so in the next step the state vector is updated reflecting the
last data. If there is no new data, only the prediction step is done. The final result is a
mixture of “predict-update” observations when new data is available and only “predict”
observations when there is no data available.

2.2.3.1 ARMA Model

Although there exists a particular way to update an ARMA model prediction once
new data becomes available [11], the update is cumbersome and is not general enough
in case there are two or more consecutive missing samples. It is even more difficult, in
the general case, when some new out-of-sample data becomes available in a non peri-
odical way. In order to deal with this, it is more practical to convert an ARMA system
to its state space representation and then use Kalman filtering for updating. Although
many possible representations exist for an ARMA system, in this work the representa-
tion suggested by Hamilton [16] is used. Once the AR system has been converted to
the state space representation, Kalman filtering can be used for updating the AR model
predictions, in exactly the same way updates are done to a “pure” state space represen-
tation. Kalman filter allows one, as said before, to handle non periodic data updates in
a natural way.

2.2.3.2 SVM Model

In the case of SVM regression, the updating is straightforward. At each step, if the
next sample is not a new available sample, this sample is replaced by its prediction, to
be used as part of the input vector of future predictions. If the next sample is available,
a prediction is made, and then the new available data is used directly as part of the input
vector instead of the prediction in the previous step.

2.3 IDIPS Implementation

The IDIPS architecture is based on three modules that cooperate with each other
(see 2.2). The first module, named Path Information Collector (PIC) (Sec. 2.3.1), col-
lects path information and converts it into a unified format to store it in the Knowledge
Base (KB) (Sec. 2.3.2). The KB can be seen as a path performance information storage
system optimized for flexibility and lookup speed. Finally, the Decision Engine (DE)
(Sec. 2.3.3) is in charge of ranking the path when a path ranking request arrives at IDIPS.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 9

Figure 2.2: IDIPS architecture

2.3.1 Path Information Collector

The PIC has three components, as illustrated in Fig. 2.2: (i) the Syntactic Converter,
(ii) the Semantics Converter and (iii) the PPMs (i.e., Path Performance Metrics).

The Measurement Points (MPs) send path information they measured to their spe-
cialized wrappers using the raw format of their choice. Wrappers make syntactic con-
version from a MP specific format into a unified PIC format. The converted information
is then passed to a semantic converter. If required, the information can be processes by
machine learning elements in the PPMs. The machine learning elements use this infor-
mation to refine their predictions. Machine learning elements can send feedback to the
MP to adapt their parameters (the feedback arrow). The semantic converter purpose is to
collect specialized path information and convert it into path attributes. A path attribute
is an integer representation of the path performance information.

2.3.2 Knowledge Base

The KB is the IDIPS part storing path attributes collected at the PIC. To make ef-
ficient lookups and reduce memory consumption, paths are decomposed into a source
and a destination. To store a path attribute, the source is first inspected to find to which
Responsibility Base (RB) the path belongs. The path attributes are pushed to the path’s
responsibility base. A Path Information Tree (PIT) is attached to each RB to store the
path attributes. A PIT is a tree where the key is a destination and the content is a collec-
tion of path attributes. The machine learning model parameters are represented like any
other path attribute in the KB.

2.3.3 Decision Engine

The DE compares the paths in order to select the best one according to some criteria.
To do so, the DE defines a collection of Cost Functions. A Cost Function returns the
cost of a (source, destination)-pair (i.e., a path) for a given criterion. The cost is a
numerical value characterizing a path according to one or more metrics. The cost must
respect two constraints. First, the lower the cost, the better the path. Second, costs
comparison relationship has to respect transitivity. The transitivity is the key point of
Cost Functions as it allows one to estimate the cost of any path independently and order
them afterwards. Transitivity allows costs caching and parallel computation. Another
important point of transitivity is enabling combinations to create more complicated Cost
Functions. To ranks paths, the DE calls the appropriate Cost Function for each possible
path to rank. It then creates the ranked paths list such that the best paths are those with
the lowest cost and the worst with the highest. Paths in the returned list are grouped
by rank. The first group of paths in the list contains all the paths with the same lowest
cost value. The second group contains those with the second lowest cost and so on.
Rank value can equal cost if there is no privacy requirements (ranking can be used to
hide costs in order to hide path information). An example of Cost Function might be
found in [17]. A Cost Function can be a machine learning model that get its parameters
directly in the KB.

2.4 Experimentation

The PPMs under consideration are delay and throughput. Delay is a measure of the
time that takes to data to go to a given destination and to come back. In this study,
Round Trip Time (RTT) measured using ICMP ping is used. Throughput is defined as
the rate of successful message delivery over a communication channel and is measured
in bits per second (bps).

2.4.1 Data Collection

For evaluating the prediction techniques described in Sec. 2.2, we performed an ex-
tensive measurement campaign between March 27th 2009 and April 13th 2009. We
used five PlanetLab machines as vantage points, mostly located in Europe: two in Eng-
land (London and Cambridge), one in Norway (Tromsø), one in Turkey (Istanbul), and
one in USA (Pasadena).

Delay and throughput periodical measurements were collected jointly by monitoring
(i.e., with tcpdump) a large file downloaded from FTP Linux servers. Each vantage point
downloaded the file from each FTP server every 20 minutes, obtaining 100 throughput
measurements each time. Simultaneously, five pings were made to each destination
from the PlanetLab nodes. The total amount of data collected was around 16GB. PPMs
measurements were averaged to obtain a single data point each 20 minutes, one for
delay and one for throughput. The campaign running time was divided into 20 minutes

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 11

slots. This is a reasonable assumption in relatively well connected nodes [18]. All the
measurements that fell into a given slot were averaged.

Due to network and server conditions, some of the measurements were unavailable.
Indeed, if a particular server did not respond at the time of downloading the file, the
measurement towards this server was given up. As a result, there were some gaps in
the resulting measurements. After filtering out this data, 45 time series, each for delay
and throughput respectively, form the actual data set. Each time series contains 1.296
measurements or samples. In order to fill the gaps, we used the K-nearest neighbors
algorithm, with a window of six samples.

2.4.2 Crossvalidation

A crossvalidation method called rolling window crossvalidation [19] is used. As
defined before, the forecast origin, is the point in time n from where the predictions are
going to be made, usually the last sample of the training set. The lead time is the time h
for which a prediction is being made. So, a prediction at lead time h from forecast origin
n is a prediction at t = n + h. In the rolling window, an horizon H is defined. This
is the maximum lead time for which a prediction is going to be made, given a forecast
origin. Then, after H predictions where made, a new sample is used the forecast origin
is moved to the next sample, t = n+1 and the system is retrained with this new sample.
Then, from the new forecast origin, another H predictions are made. This process is
repeated M times. Then, for each one of the M times, for a given lead time h, all
the errors are averaged, thus, obtaining a measure of error per lead time. Finally, and
average of the average per lead time is found, thus the final error is obtained.

2.4.3 Error Measurements

In order to measure the error made by the models, there are as much as 18 error
measurements [20]. The Mean Absolute Percentage Error (MAPE) was selected for this
work. The MAPE measures the difference in a percentual sense, between the prediction
from the actual value. It is defined as, where ŷi is the prediction and yi is the actual
value:

MAPE =
1

N

N∑
i=1

ŷi − yi

yi

(2.7)

2.4.4 Results

For all time series for delay and throughput, four prediction models are found:

1. ARMA model. The autoregression order p is found via rolling crossvalidation

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

0.
0

0.
1

0.
2

0.
3

100% 60% 20%
Amount of out−of−sample samples

MAPE loss for regression for Delay

M
A

P
E

ARMA
SVR
jSVR
SSpace
Naive
Mean
AR1

(a) Delay

●●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●●

●●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●

0.
0

0.
5

1.
0

1.
5

2.
0

100% 60% 20%
Amount of out−of−sample samples

MAPE loss for regression for Throughput

M
A

P
E

ARMA
SVR
jSVR
SSpace
Naive
Mean
AR1

(b) Throughput

Figure 2.3: Box Plots under MAPE error for delay and throughput prediction

2. Individual SVR model. An SVR is fit for a one dimensional input vector, one
dimensional output. If d is the delay and th is the throughput value, a series of
vectors with {dt−1, · · · , dt−k : dt} and {tht−1, · · · , tht−k : tht} where used. The
number of previous samples to use were found by crossvalidation. The kernel
width γ is also found by crossvalidation.

3. Joint SVR model. An SVR is fit for a two dimensional input vector and one dimen-
sional output. If d is the delay and th is the throughput value, a series of vectors
where used with {dt−1, . . . , dt−k, tht−1, . . . , tht−k : dt} and {dt−1, . . . , dt−k, tht−1, . . . , tht−k : tht}.
The number of previous samples to use were found by crossvalidation. The num-
ber of previous of used samples is the same for throughput and for delay. The
kernel width γ is also found by crossvalidation

4. State Space representation. In this case, a series N of bidimensional vectors
{dt, tht} are used to find the parameters of the State Space model. Then, when the
model is left to run, the desired predicted quantity is taken from the bidimensional
vector that results after prediction.

When fitting the models, data is split into three types of datasets, training, validation
and test sets. When the meta parameters are being found, first, the dataset is split into
three sets: 70% for training, 10% for validation, and 20% are held out for future testing.
Then, the model parameters are found over the 70%. The meta parameters and the
results are validated on the 10% left for validation. Once the meta parameters are found,
the final prediction results are found by retraining the model, this time with 80% of the
data, and then using the remaining 20% for testing. The results are crossvalidated and
each lead time is evaluated 10 times.

In the experiments, the amount of available future samples is varied, from 100%
available samples to 20%, in steps of 20%. The accuracy of the model is checked against
the full 100% available samples vector. The accuracy of the model under different
amounts of available samples is crossvalidated and the results are compared.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 13

●●
●●

●

20 40 60 80 100

0.
00

6
0.

01
0

0.
01

4
0.

01
8

Amount of Samples(%)

M
A

P
E

MAPE loss for Delay
● ARMA

SVR
JointSVR
StateSpace
Naive
Mean
AR1

(a) Delay

●
●

●●●

20 40 60 80 100

0.
04

0
0.

05
0

0.
06

0

Amount of Samples(%)

M
A

P
E

MAPE loss for Throughput
● ARMA

SVR
JointSVR
StateSpace
Naive
Mean
AR1

(b) Throughput

Figure 2.4: Median of MAPE loss for delay and throughput for different Models

Fig. 2.3 and 2.4 resume the results. In Fig. 2.3, a box plot of the results can be seen.
A box plot contains the minimum of the dataset (lower bar) followed by the first quantile
(lower part of the box), and then, the median of the data (bold line inside the box). Next,
the third quantile can be found (upper part of the box), followed by the maximum of the
data within five quantiles (upper bar), and all outliers are shown as dots. Here, it can
be seen that most of the methods give approximately the same result, however, some
methods give a more variable performance compared to other.

As can be seen from Fig. 2.3, JointSVR regression gives the more variable perfor-
mance of both methods. ARMA, in contrast, is the least variable method. Individual
SVR gives a not so variable performance with all future samples available, but the per-
formance is more variable with less future samples compared with other methods. Also,
the variation is higher in the throughput plots. This indicates that throughput is more
variable and somewhat more difficult to predict than delay.

In Fig. 2.4, we can see a comparative plot of the median of the MAE error for dif-
ferent methods. The median is chosen because it is more resistant to heavy outliers. As
can be seen from Fig. 2.4, the best performing method is individual SVR. However, its
performance degrades quickly as future samples are taken away. ARMA method does
not present as good performance as SVR but its performance is more stable when future
samples are more scarce. The ARMA models better adaptivity could be explained by
the fact that Kalman filter gives a higher adaptability compared to SVR.

2.5 Future Work

The most important issue to solve in PPMs prediction is adaptivity. Although the
models reported in this document include adaptivity, it is possible to see from the data
that adaptivity is the model most critical component. Also, since adaptations must be
made after measuring, work is underway to find the optimal sampling rate in order to
minimize intrusive network measurements.

Regarding IDIPS itself, future works are twofold. First, in terms of implementation,
efforts must be done in improving the current. For instance, we want to make IDIPS

IPv6-compliant. We also want to develop libraries and interfaces for controlling MPs.
Second, in terms of evaluation, we want to determine the effects of oscillation when a
decision is taken.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 15

Chapter 3

Delay estimation and delay-based path
selection and routing

Internet Coordinate Systems (ICS) have been widely used in large-scale network
applications. The success roots in the embedding of Internet nodes into a metric space
or a coordinate system. When the coordinates of the nodes are computed, the predic-
tion of the distances (delays) between two nodes is a straightforward application of a
distance function where no explicit communication between them is required. This sig-
nificantly reduces the overhead of active probing and largely improves the efficiency of
the network.

However, Internet delay space is not a metric space. The triangle inequality is often
violated due to the Internet’s structure and routing policies. It has been shown that the
violations of triangle inequality (TIVs) in the Internet delay space are not rare and that
their impact on ICS are not negligible. Figure 3.1 demonstrates the embedding of three
nodes that violate triangle inequality (i.e. AB > AC + CB) into a metric space. It can
be seen that the longest edge AB is shrunk and the other two edges, AC and CB, are
stretched in order to satisfy triangle inequality in the embedding space. Therefore, the
presence of TIVs degrades the accuracy of an ICS. Many studies have reported that this
inaccuracy can badly hurt the performance of neighbor selection, which is crucial for
many distributed systems.

3030

50A(10,10) B(60,10)BA
100

10

C

Euclidean Space

10

Internet Delay Space

TIV

C(35,26)

Embedding

Figure 3.1: Embedding three nodes that cannot form a valid triangle into a metric space.

In this chapter we will show how Machine Learning techniques can be used to im-

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 17

prove the accuracy of an ICS. We will derive automatically a criterion that can be used
by nodes to better select their neighbours in the ICS and thereby reduce the impact of
TIVs.

The knowledge of estimated delays between nodes can be useful to select better
paths for real-time applications (refer to chapter 2 on IDIPS for a more detailed expla-
nation on path selection). However, since the Internet was not developed with QoS guar-
antees in mind, the default route between two nodes is not guided by QoS constraints
(and, in particular, by constraints on the delays). In many cases the route between two
nodes A and B chosen by the network is not the lowest-delay path and it is possible to
find nodes C that are shortcuts in term of delays:

RTT (A,B) > RTT (A,C) +RTT (C,B)

where RTT (X, Y) is the RTT1 (Round Trip Time) between the nodes X and Y . For
any path AB in a network, our objective is to find some nodes C that are shortcuts in
terms of delays. If we are able to find these shortcuts we will be able to provide a better
service to the applications using the network : instead of sending the data directly from
A to B, we will use a node C as relay in order to obtain smaller delays.

In this chapter we will also propose some methods that rely on the nodes running an
ICS to detect useful routing shortcuts in networks.

3.1 Problem Formalization

3.1.1 Improving the ICS

We focus on a classical ICS algorithm, Vivaldi [21], which approximates a network
by a system of springs and seeks to minimize its energy. The minimization is fully
distributed and iteratively done at each node. In each iteration, each node updates its
own coordinates by minimizing the embedding error with respect to its neighbors. After
some iterations depending on the complexity of the network, the coordinates of the
nodes become stable, i.e., the embedding error of the whole network is smaller than a
threshold, with a small amount of jitter.

To collect training data, we ran Vivaldi on P2psim and Meridian respectively and
recorded the coordinates of the nodes, after they become stable, at K different times
or ticks. K = 100 in our experiments. From the coordinates obtained, we computed
the time-varying distances between each pair of neighboring nodes. We denote the
measured distance by d and the estimated distance by d̂. Thus, for each edge, we
have {d, d̂1, d̂2, . . . , d̂K}. For the K estimated distances, we further calculated some
statistics including d̂max = max{d̂1, . . . , d̂K}, d̂min = min{d̂1, . . . , d̂K}, d̂mean =
mean{d̂1, . . . , d̂K}, d̂median = median{d̂1, . . . , d̂K} and d̂std = std_dev{d̂1, . . . , d̂K}.

1The RTT between two nodes X and Y is the time necessary to travel in the network from X to Y
and go back to X from Y .

The input variables to the machine learning algorithm consist of various combi-
nations of these statistical variables and the measured distances. Note that the input
variables are normalized in different ways in order to get rid of the influence of partic-
ular network conditions. Currently, 64 input variables for each edge are used. A few
examples are

d̂max − d̂min

d
,
d̂mean − d̂median

d
,
d̂mean − d
d̂max

,
d̂mean

d̂std

,
d̂K

d
,
d̂std

d
.

Note that the last two variables, d̂K

d
and d̂std

d
, are equivalent to those used in [22] and [4]

respectively. The former, d̂K

d
, is a measure of relative estimation error, denoted byREE,

while the latter, d̂std

d
, is the standard deviation of the relative estimation error, denoted

by std_REE.

For supervised learning, the outputs or labels of the edges are needed. Here, the
outputs are simply TIV or non-TIV, which can be easily obtained from the measured
distances.

The problem we want to solve with Machine Learning is to derive automatically a
classification model, based on the above-mentioned variables, that would tell with high
likelyhood whether or not an edge between two nodes is a TIV-edge.

3.1.2 Finding routing shortcuts

When an edge AB is a TIV-edge, this means that there exists a routing shortcut
ACB via some node C in terms of delay. The second subproblem we address then
consists in finding candidate C nodes that are likely to be interesting routing shortcuts.

Using only the estimated delays provided by an ICS to find the shortcuts in a network
is useless. Indeed, the principle of an ICS is to give to each node of the network a
coordinate in a metric space such that the distance in the metric space between the
coordinates of two nodes gives an estimation of the delay between these nodes. Since
the triangle inequality must hold in a metric space, it is impossible to find three nodes
such that

EST (A,B) > EST (A,C) + EST (C,B)

whereEST (X, Y) is the estimated RTT between the nodesX and Y . So, we must com-
bine estimations with measurements in order to obtain a shortcuts detection criterion.
In addition of the estimated RTT of each path in the network, we consider that we can
obtain the following measurement results. First, if we look for a shortcut for the path
AB, we assume that RTT (A,B) can be measured. Secondly, we assume that we can
obtain the Vivaldi’s measurement results done between the nodes and their neighbors in
order to compute the coordinates.

Given these data we want to find criteria that provide a set of C nodes that are prob-
ably shortcuts for that path. An extended version of this problem, for further research,
would be to rank the C nodes.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 19

3.2 Machine Learning techniques/algorithms used

We attempt to detect TIVs in order to avoid them and thereby reduce their negative
impacts on an ICS. First, we apply supervised learning methods to learn a TIV classifier.
A discriminative TIV detection criterion, called OREE, will be found. Then, OREE
is used to remove severe TIV edges from the ICS iteratively. Experimental results will
show that OREE is better at TIV detection than other existing methods [22, 4], and the
performance of nearest neighbor selection is gradually improved as severe TIV edges
are progressively removed from the ICS.

Our first objective is therefore to find variables that are consistently discriminative
for TIV detections regardless of the networks. Supervised learning methods are promis-
ing techniques that allow us to achieve this goal. This section details the use of a particu-
lar supervised learning method, namely decision tree, in finding discriminative variables
for TIV detection.

Decision Tree (DT) is one of the most popular supervised learning algorithms. Each
decision tree is a classifier in the form of a tree structure, where each interior node spec-
ifies a binary test carried on a single input variable and each terminal node is labeled
with the value of the output. In the learning phase, a decision-tree builder recursively
splits the training samples with binary tests, trying to reduce as much as possible the
uncertainty about the output classification in the resulting subsets of the samples. The
splitting of a node is stopped when the output in it is homogeneous or some other stop-
ping criterion is met. During learning, a byproduct is the ranking of the input variables
according to their importance, which is often used to find discriminative variables. In
the classification phase, we start from the root of the tree and move through it until a
terminal node, where the classification result is provided.

3.2.1 Methodology: Scenarios and Tools for Learning

We have learned our decision trees using a data mining software called PEPITO2

which integrates most popular machine learning algorithms. The training data collected
was randomly divided into disjoint learning and test sets of roughly equal sizes. In other
words, we used half of the data to build the trees and the other half to evaluate the trees.

3.2.2 Learnt model and discriminative variables

Two different trees were separately built for P2psim and Meridian, shown in Fig-
ure 3.2.

By examining the root nodes of both trees in Figure 3.2, it can be seen that the first
test is on the same variable, d̂std−d

d̂mean
, which appears to be the most discriminative. We call

it OREE representing Oscillation and Relative Estimation Error, because it consists of

2http://www.pepite.be

(a) P2psim (b) Meridian

Figure 3.2: Top three levels of the decision trees built on P2psim and Meridian data
set. The colour in the rectangular boxes reflects the proportions of TIV and Non-TIV
classes.

two parts: d̂std

d̂mean
, a relative oscillation measure and d

d̂mean
, a relative error measure. On

both trees, when the value of OREE is smaller than the cut point, the edge is more
likely to be a TIV edge, and vice versa.

3.2.3 Evaluation of the learnt model

ROC (Receiver Operating Characteristic) curves are useful for the evaluation of ma-
chine learning techniques. A ROC curve is a graphical plot of the false positive rates
(FPR) as x-axis versus the true positive rates (TPR) as y-axis for a binary classifier as
its discrimination threshold is varied. In the ROC space, the best classification per-
formance would yield a point in the upper left corner or coordinate (0,1), representing
100% true positives and no false positives. Thus, the higher the ROC curve is, the bet-
ter the classifier is. Here, we employ ROC curves to compare different TIV detection
methods, including decision trees, OREE, REE and std_REE, shown Figure 3.3(a)
and 3.3(b). It has been observed that:

• The ROC curves of OREE are almost identical to those of the decision trees in
both networks. This suggests that the other variables provide little extra informa-
tion so that their corresponding nodes in the trees can be safely pruned with no
performance degradation, using OREE for TIV detection is as discriminative as
the whole tree.

• The ROC curve ofOREE is consistently the highest in different networks, mean-
ing that OREE is the most discriminative variable.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 21

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

o
si

ti
ve

 R
at

e

Decision Tree

OREE

REE

std REE

(a) P2psim

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

o
si

ti
ve

 R
at

e

Decision Tree

OREE

REE

std REE

(b) Meridian

Figure 3.3: ROC curves of the decision trees, obtained by varying the threshold of
the probability of TIV, and of three variables including OREE, REE and std_REE,
obtained by thresholding the values of the corresponding variables.

3.3 Implementation

3.3.1 Improving the ICS

The use of supervised learning techniques brings out OREE, an effective TIV de-
tection criterion. We then incorporate it into the neighbor selection procedure in Vivaldi.

Traditionally, Vivaldi is started with each node selectingm random neighbors. After
a period of time, each node probes another m random nodes and gets totally 2 × m
neighbor candidates. For each edge, the value of OREE is computed from the K most
recent coordinates of the nodes and the current coordinates of the probed node. As
edges with small OREE value are more likely to be TIV edges, the neighbors of a
node are updated by selecting the m candidates with large OREE and abandoning the
others. This neighbor update procedure is repeated every T seconds. In our experiments,
m = 32, K = 100 and T = 100.

3.3.2 Finding routing shortcuts

We have developed two basic shortcut detection criteria.

Our first criterion is called EDC (Estimation Detection Criterion). To decide if a
node C is a shortcut for a path AB, this criterion compare the mesured RTT of the
direct path between A and B and the estimated RTT of the alternative path using C as
relay. Formaly, if

RTT (A,B) > EST (A,C) + EST (C,B)

then C is considered as a shortcut for the path AB. The potential problem with this
criterion is that shortcuts cannot be represented in the metric space used by the ICS:

they are a source of estimation errors and using the values of the estimated RTT when
there are shortcuts is not necessary a good idea.

The second criterion is called ADC (Approximation Detection Criterion) and uses
only the order between the estimated RTTs. For a path AB and a node C, we define
CA (resp. CB) as the A’s (resp. B’s) Vivaldi neighbor that is the nearest to C according
to the estimated RTTs. Since A and CA (resp. B and CB) are neighbors, we assume
that RTT (A,CA) (resp. RTT (B,CB)) is known and can be used by the criterion to
approximate the RTT of the alternative path: if,

RTT (A,B) > RTT (A,CA) +RTT (CB, B)

then C is considered as a shortcut for the path AB. The potential problem with this
criterion is that it is sometimes impossible to find a neighbor of A and/or a neighbor
of B that is near C. In such cases, we obtain a bad approximation af the RTT of the
alternative path and the detection result can be wrong.

3.4 Experimentation and evaluation

3.4.1 Improved ICS

Our improved Vivaldi, called “TIV avoided Vivaldi”, is tested on P2psim and Merid-
ian respectively.

We first compute TIV severity of each edge. The definition of TIV severity in [22]
is adopted, which is ∑

c∈S da,b/(da,c + dc,b)

|S|
, if da,b > da,c + dc,b, (3.1)

where dx,y denotes the measured delay between x and y. S is the set of all nodes in the
delay space and |S| is the number of nodes.

Figure 3.4 shows the cumulative distributions of TIV severity after each neighbor
update. A decreasing trend on TIV severity is observed, meaning thatOREE is capable
of identifying those edges with high TIV severity and eliminating them from ICS.

Then, we evaluate the performance of nearest neighbor selection. To this end, a sub-
set of the nodes are randomly selected as candidates for the nearest neighbor selection.
For each node which is not in the candidate set, the nearest neighbor in the candidate set
is detected in the original delay space and in the embedded space respectively. Denote
dist_to_selected the distance to the nearest neighbor in the candidate set in the em-
bedded space and dist_to_optimal in the delay space. A penalty for nearest neighbor
selection is defined as

(dist_to_selected− dist_to_optimal) ∗ 100

dist_to_optimal

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 23

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

TIV severity

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

initial

iter1

iter2

iter3

iter4

iter5

iter6

iter7

iter8

iter9

(a) P2psim

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

TIV severity

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

initial

iter1

iter2

iter3

iter4

iter5

iter6

iter7

iter8

iter9

(b) Meridian

Figure 3.4: Distribution of TIV severity

10
−1

10
0

10
1

10
2

10
3

10
4

0.75

0.8

0.85

0.9

0.95

1

Percentage penalty

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

initial

iter1

iter2

iter3

iter4

iter5

iter6

iter7

iter8

iter9

(a) P2psim

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.5

0.6

0.7

0.8

0.9

1

Percentage penalty

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

initial

iter1

iter2

iter3

iter4

iter5

iter6

iter7

iter8

iter9

(b) Meridian

Figure 3.5: Nearest neighbor selection penalty

This metric attempts to answer the question “how far is my nearest distance to a set of
candidates?”.

In our experiments, we randomly select 100 candidate nodes for P2psim and 125
for Meridian respectively. These numbers are set in order to lower the probability that
a candidate node is chosen by a test node as its neighbor.

Figure 3.5 plots the cumulative distributions of nearest neighbor selection penalty
when neighbor sets are iteratively updated. We can see that the performance of nearest
neighbor selection is clearly improved.

3.4.2 Finding shortcuts

To evaluate the performance of our routing shortcut criteria, we use the classical true
positive rate and false positive rate indicators. For a path AB, a good shortcut detection
criterion must detect a node C as a shortcut if it is a shortcut for the path AB (i.e. if it
is a positive) and must reject a node C if it is not a shortcut for the path AB (i.e. if it
is a negative). The percentage of positives detected as shortcuts is the true positive rate

EDC ADC
TPR ITPR FPR TPR ITPR FPR

P2PSim 53% 83% 2% 65% 84% 9%
Meridian 54% 64% 9% 70% 76% 25%
Planetlab 37% 75% 1% 60% 81% 5%

Table 3.1: EDC and ADC detection results using Vivaldi to estimate delays

(TPR) and the percentage of negatives detected as shortcuts is the false positive rate
(FPR). A good detection criterion must provide a high true positive rate and a low false
positive rate.

The problem is that a shortcut is not necessary useful. For example, for a path AB
such that RTT (A,B) = 100ms, A node C such that RTT (A,C) + RTT (C,B) =
99ms is a shortcut that provides an absolute gain of 1ms and a relative gain of 1%.
Since using C as relay for sending data from A to B will add an additional forwarding
delay, detecting such shortcuts is useless. We define an interesting shortcut as a shortcut
that provides at least an absolute gain of 10ms and a relative gain of 10%. We also
define the interesting true positive rate (ITPR) as the percentage of interesting shortcuts
detected as shortcuts by the criterion.

To test our criteria, we used three delay matrices obtained by doing measurements
in real networks. These three matrices are named P2PSim, Meridian and Planetlab
and give respectively delay measurements results between 1740, 2500 and 180 nodes.
In these matrices, the percentage of paths for which there exists at least a shortcut is
respectively 86%, 97% and 67% and the percentage of paths for which there exists at
least an interesting shortcut is respectively 43%, 83% and 16%. So, searching shortcuts
in the networks modelled by these matrices can provide an improvement in term of
delays for lots of paths.

We have simulated the behaviour of Vivaldi on these three networks by using the
P2PSim3 discrete-event simulator. Each node has computed its coordinates in a 9 di-
mensional Euclidean space by doing measurements with 32 neighbors. Then, we simply
applied our detection criteria using the estimated delay matrices computed with the co-
ordinates obtained at the end of the simulations of Vivaldi.

The true positive rates and false positive rates obtained with our criteria applied us-
ing the estimated delays produced by the simulations are given in table 3.1. We see
that the percentage of interesting shortcuts detected as shortcuts (ITPR) is very good
in most of the cases for both criteria. Furthermore, the percentage of non-shortcuts de-
tected as shortcuts is generally quite low. So, these results are satisfactory. Considering
these results, we prefer the EDC criterion: ADC is always able to detect a little bit more
shortcuts than EDC, it also give more false positives.

It is probably possible to obtain more results by tuning Vivaldi’s parameters or im-
proving the Vivaldi’s algorithm. For example, some approaches have recently been pro-

3http://www.pdos.lcs.mit.edu/p2psim/index.html

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 25

http://www.pdos.lcs.mit.edu/p2psim/index.html

posed in order to mitigate the impact of the shortcuts on the quality of the embedding.
One of these approaches simply consists in applying a non linear transformation[23]
like y = x1/n (where n is a parameter) to the delays before trying to estimate them. We
have observed that n = 1.5 is the value of the parameter that gives the better results
according to the estimation errors. By using the estimation obtained with this optimised
version of Vivaldi, we obtained much better detection results than with a classic imple-
mentation of Vivaldi. For example, on the Planetlab matrix, the EDC criterion gives
an ITPR of 94% and a FPR of 3% (the corresponding values obtained with a classical
implementation of Vivaldi are 75% for the IFPR and 1% for the FPR).

3.5 Conclusion and Future Work

In this work, we used supervised learning methods, namely decision trees, to suc-
cessfully find a discriminative variable OREE for TIV detection. Based on OREE,
we design a TIV avoidance algorithm which effectively removes those severe TIV edges
and improves the performance of nearest neighbor selection.

As regards routing shortcuts, we intend to tests other criteria for finding routing
shortcuts (for example, a combination of ADC and EDC in order to exploit their advan-
tages) and to observe the impact of the different Vivaldi’s parameters and improvements
on the detection results. At the end of this phase of the work, we will have chosen a
criterion and an implementation of Vivaldi (improvements integrated, values of the pa-
rameters, ...). For any path in the network, we will be able to provide a list of nodes that
are probably shortcuts for it.

The next step will be to try and rank the nodes of the list. For some paths, there
exists hundreds of shortcuts and providing a list with hundreds of nodes is not really
useful: we want to provide only the best or, at least, one of the best shortcuts for the
given path. Obviously, the last step of the work will be to use the detection results order
to improve the quality of the routing in the network.

Chapter 4

Routing resilience use cases

The purpose of this section is to document techniques that improves the quality of
the recovery process by proposing:

i) a selective Routing Information Base (RIB)/Forwarding Information Base (FIB)
update process towards router’s line cards. The preferential selection criteria is the
number of times the corresponding forwarding entries are looked up in the line cards’
Local FIB (LFIB) i.e. the utilization rate of the forwarding table entries. By observing
that some prefixes "carry" more traffic than others the concept developed here consists
in determining the amount of traffic (i.e. number of packets) each entry "carries" so
as to deduce a traffic-informed preferential selection criteria for the forwarding entries
resulting from the RIB/FIB update process. The latter process involves typically a large
amount of entries when after (local) failure occurrence henceforth the update process is
not atomic: multiple update quantum of times shall elapse before the forwarding table
entries are fully updated after such event. The non-local failure case requires further
investigation and is not addressed in the present version of this document.

ii) upon failure occurrence, the selection of recovery link(s) that may themselve(s)
be under failure but not yet known as such by a router processing a Link State topology
update results in situation where re-routing action does not "recover" traffic but further
delays its recovery. This phenomenon typically occurs when two (or more) links share
a common risk. The proposed mechanisms consists here in detecting and identifying
the set of links sharing a common risk. The purpose is to avoid selection of the links
(sharing a common risk) during routing table entries re-computation after detecting the
failure occurrence of one of their members by means of a probabilistic model: link
failures can probabilistically be part of larger failure events involving multiple links i.e.
single link failure events do not account for 100of the failure cases.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 27

LFIB

Forwarding

Line card

SPT computation

LS database

RIB

FIB

Routing engine

Switching fabric
LFIB

Forwarding

Line card

3

1

2a

2b

3

LS PDU LS PDU

Data

packet
Data

packet

Figure 4.1: The router update process

4.1 Minimizing packet loss during re-routing

4.1.1 Formalisation of the technical problem

Routers running Link State (LS) routing protocols, flood LS PDUs (LS Protocol
Data Units) over the network. These packets contain information about the local links
and MA (multi-access) networks a router is connected to. All received LS PDUs are
collected into a database (the LS database) which allows a router to have a view on the
network link topology and to calculate shortest paths towards different destinations (IP
addresses) or network parts (IP network prefixes). The LS database is updated by either
detecting a local connectivity change (e.g. failing link or interface), or by receiving an
LS PDU from a peering router. Two types of LS PDUs can be received:

• LS Refresh: A node in the network has sent a refresh of its status, involving no
changes in the network.

• LS Update: A node in the network has detected a state change in its link connec-
tivity to an adjacent node or network (addition or removal).

Only the second option is of interest for us, as it is the direct trigger for the router up-
date process which we intend to investigate. The resulting update process can modeled
in three steps (see Figure 4.1):

1. Re-computation of the shortest path tree (1), based on the updated LS database.

2. Update of the central Routing Information Base (RIB) and the central Forwarding
Information Base (FIB), based on the shortest path computation (2a and 2b).

3. Distribution of central FIB towards the line cards’ local FIB (LFIB) (3).

The recomputation of the shortest path tree is usually optimized to be recalculated in
its entirety and takes about 30 to 50 µs per destination prefix. Optimizations can be done
using incremental SPF (iSPF) calculation schemes (see [24] and [25]). The second step
consists of updating the central RIB and FIB, using the calculated shortest paths. This
uses about 50 to 100 µs per destination prefix (see [26]). Typically this step happens in
(pseudo-)parallel with step 3, which is about distributing the central FIB entries towards
the line cards’ LFIB. Running step 2 and 3 in (pseudo-)parallel, means that they both use
the central CPU in interleaved time slots, swapping between both processes for updating
and distribution. This process can be compared to the usual process scheduling in time-
sharing OSes such as Linux, whereas commercial routers make use of a hard real time
OS. The consecutive time the central CPU is spending to a task of central RIB/FIB
updating or line card distribution is determined by the used quantum of the swapping
process. The quantum time can typically be configured between 10 and 800 ms (for
Linux, see [27]). Similar quantum time values were found in [26].

In practice the update process consists of a series of update-distribution batches,
where in a first quantum a fixed set of prefixes are updated towards the central RIB/FIB,
followed by a quantum where the same set of prefixes is distributed towards the LFIBs.
By default, the cardinality of the set (the number of prefixes that are updated or dis-
tributed during a batch) is fixed during the update process. This is shown in Figure 4.2,
and will be further quantified in the next section.

The process described can be formalized using the following naming conventions
and modeling assumptions (see Figure 4.1):

• The set of affected1 traffic flows2: Fn = {f1, ..., fn} in MB/s.

• The ordered associated traffic flow rate bw(fi) : Fn → R of the affected flows in
MB/s.

• The update time tu: the time needed to update one prefix in the central RIB/FIB.

• The distribution time td: the time needed to distribute a prefix from the central
FIB towards the line cards.

• The number xu of prefixes that are updated/distributed in one batch

• The update quantum resulting from updating xu prefixes is the time tqu = xu.tu.

• The distribution quantum resulting from distributing xu prefixes from the central
RIB/FIB towards the line cards is the time tqd = xu.td.

• The swapping time/cost ts between interleaved quantums.

An example using the introduced terminology can be found in [7].

1Flows are ’affected’ if their routing is influenced by the received LS Update
2A traffic flow is a function f : V × V → R which attaches a load to every edge of the network.

The function is constrained by a capacity constraint, a flow symmetry constraint and a flow conservation
constraint. (see [28]).

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 29

Update to central

RIB/FIB

Swap

overhead

Distribute FIB to

linecards

Swap

overhead

Update to central

RIB/FIB
...

0 tqu tqu+ts tqu+tqd+ts tqu+tqd+2ts 2tqu+tqd+2ts

time

update-distribution batch

Figure 4.2: Timeline of the router update process

Recovery time and recovered traffic The recovery of a set of traffic flows (i.e.
traffic directed towards a set of destination prefixes comprised as part of different RIB/FIB
entries to be updated) is completed when the last corresponding RIB/FIB entry has been
updated and distributed from the central RIB/FIB to the line card. The corresponding
point in time where the entire set of affected traffic flows is recovered, is referred to as
the total recovery time. A single traffic flow can be considered as recovered, once its
corresponding RIB/FIB entry has been both updated and distributed from the central
RIB/FIB to the line cards.

The recovery time for a single traffic flow, given a constant xu value, is thus depen-
dent on the update-and-distribution batch bi comprised in it. Only when the correspond-
ing batch (and all previous batches) are completed, the flow has been recovered. Given
n flows and the fact that only xu flows can be updated in one batch, the batch number bi
is determined by bi = di/xue. A traffic flow is recovered after all previous batches have
been updated and distributed, having a swapping overhead on every load of a process.
This results into the formula for the recovery time of flow fi.

r(fi) = bi.(xu(tq + td) + 2ts)− ts

Packet loss As long as an affected traffic flow is not recovered upon a failure,
packet loss occurs (as packet are still forwarded using the entry computed using the
"outdated" routing information). The loss is proportional to the throughput of the traffic
flow during the event of the update. This means that the total packet loss during the
switchover operation of all traffic flows is proportional to the product of the recovery
time and their corresponding average flow rate during the router update process3. In
other terms, the drop in average capacity consumed by each outgoing flow (i.e. average
bandwidth consumption), can be equated to losses:

loss(Fn) =
n∑

i=1

r(fi).bw(fi)

3This assumes that we exactly know the average bandwidth used during the router update. Strictly
speaking it is proportional to the the amount of packets (taken in byte length) for the corresponding prefix
lost during time between the failure occurrence and the FIB entry update times. The use of an average
rate is a first-approach simplification that requires further validation (traffic burstiness plays an important
role in the estimation). It is also important to notice that the loss per prefix occur independently of the
preferential RIB/FIB update sequence but determine by means of i) average rate estimation per prefix
(prefix preferential selection using cumulated statistics) with the assumption that the observed average
will persist during the recovery period, ii) rate prediction from prior samples the associated rate to the
each of prefixes during the "recovery period" (short-term prefix preferential selection). In practice, the
bandwidth accounting is an approximation using binning techniques. At the same time this approximation
is the estimation of the needed (available) capacity on the alternate set of one or more link(s) towards the
destination.

Goal of the use case The section above illustrates that the order in which traffic
flows are updated, can be of utmost importance for minimizing the associated packet
loss of the update operation. Randomly updating RIB/FIB entries, as is usually the
case, can result into the situation where higher bit rate flows need to wait on others
before they are updated, resulting in high cumulative loss. The goal of this use case is
thus to minimize packet loss during the switchover operation by predicting short-term
traffic bitrate trends (i.e. bitrate trends per routing table entry hence per IP destination
prefix) in order to determine which RIB/FIB shall be preferentially updated.

4.1.2 Machine Learning techniques/algorithms used

The techniques used to tackle the use case can be of three types:

1. Techniques to re-order the set of (aggregated) traffic flows4 (typically with respect
of there bitrate)

2. Techniques to optimize the order, optimize and steer the quantum batch size

3. Techniques to predict short-term variations of traffic flows

Traffic flow sorting (type 1) Once average rate data about the traffic flows is known,
the most obvious way of using this information is to sort Fn in descending order of
average flow rate. The resulting set On = {o1, ..., on} can now be defined as follows:

∀oi : ∃j ∈ {1, . . . , n} : oi = fj

i > j ⇒ bw(oi) ≥ bw(oj)

Upon the RIB information update, the corresponding loss can thus be deduced and
used as a mean to minimize average traffic losses during the central RIB/FIB to LFIB
update process. It is now easy to see or to prove that loss(On) ≤ loss(Fn).

Optimizing the number of prefixes in a quantum (type 2) The previous sections
(i.e. 4.1.1) made clear that the effect of a fixed xu and related quantums during the
router update process can lead to a higher impact than expected. The xu acts as a sort of
a bin packer for the updates/distributions to be executed. Using a given Fn (being sorted
or not), this section evaluates the possible gain of allowing xu to be dynamically deter-
mined per update-distribution batch and optimized depending on the specific character
of Fn.

The goal of this configuration strategy is to minimize the function loss(Fn) by find-
ing the appropriate sequence of sets of prefixes. Instead of a single fixed xu this results

4FIB entries correspond with IP destination prefixes, the resulting entity to order is thus a set of traffic
flows, further referred to as traffic flow aggregates

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 31

Update xu1

prefixes
swap

0

Distribute xu1

prefixes
swap

Update xu2

prefixes
swap

Distribute xu2

prefixes
... time

batch1 batch2

R(batch1) R(batch2)

Figure 4.3: Timeline for router updates having a variable xu

into a sequence Xu = (xu1 , xu2 , . . . , xul
)5 of the number of prefixes to be updated dur-

ing every adjustable quantum. Associated to these sequence is the sequence of update-
distribution batches Bu = (batchu1, . . . , batchul). This means that every fi is contained
in an update-distribution batch of Bu. Unfortunately the smaller the xui

’s are chosen,
the more swapping time is sneaking into the total recovery time (see Section 4.1.1) of
the router update, possibly resulting into additional loss. We have thus to consider an
adaptive xu setting, that minimizes the packet loss by keeping the total recovery time
as small as possible (update-distribution batches should be as large as possible to re-
duce swapping time). However, one should also avoid that the recovery of certain traffic
flows is delayed longer than needed, because the longer the update-distribution batches
are, the longer prefixes need to wait until their update is both updated and distributed,
and thus recovered.

The associated recovery time of a flow fi is again determined by the batchk to
which fi is attached. However, contrary to the definition in 4.1.1, the length of update-
distribution batches is not fixed anymore. Therefore, one needs to find first in which
batch a flow fi is contained (for further details see [7]).

We can observe that in the middle of the ordered process of updating Fn, with our
current batch containing a set of flows to be updated bcurrent = (fi, . . . , fi+s)

6, we have
two options:

1. Extend the current batch with the next flow fi+s+1 (extension)

2. Finish the current batch and put the next flow into a new update-distribution batch
(splitting)

We now can can compare the additional cost of extension vs. the additional cost of
finishing the update-distribution batch to guide us into the decision above.

The extension cost ecis can be formulated as follows:

ecis=(tu + td)bw(fi+s) + . . .+ (s+ 1)(tu + td)bw(fi)

=(tu + td)
i+s∑
t=i

(i+ s− t+ 1)bw(ft)

The formula above expresses the fact that, by extending the current batch, the recovery
time of every flow in the current batch will result into an additional delay compared

5Xu is actually an integer partition of n. his means that
∑l

i=1 xui = n.
6Flows prior to fi have already been updated in an ordered manner (f1 to fn)

to the minimal delay it can experience (compared to the earliest recovery time7). That
additional delay when multiplied with the associated bandwidth allows to deduce the
additional loss caused by the update-distribution batch extension. For example, the re-
covery of the first flow fi in the given batch was already delayed with s update-distribute
batches (as it was not directly distributed but put in the same batch of s next flows), and
by adding an additional element (extending the batch), this operation will delay it with
an additional update-distribution batch. On the contrary, the recovery of the last flow
of the current batch will only be delayed with one update-distribution batch in case of
extending the current batch.

Finishing the current batch on the other hand, also has an associated cost, as it will
introduce additional delay for the coming flows, resulting from the additional swapping
cost. This termination condition can be formulated as follows:

fini+s = 2ts

n∑
t=i+s+1

bw(fi+s+1)

Our configuration strategy now consists in identifying the action with the least asso-
ciated cost. The actions being: extending the current batch if ecis < fini+s, or finishing
the current batch in the other case. This action scheme can be applied recursively until
the update of Fn is finished. An example of applying this heuristic can be found in [7].

Techniques for predicting short-term bitrate consumption (type 3) Predicting the
trend (more precisely the variation over time) of the bitrate of traffic flow aggregates
can be formulated into two ways. It can be formulated either as a regression problem
(predict the exact or relative bitrate increase/decrease) or as a classification problem
(the class of exact/relative bitrate increase/decrease). Predicting these variations can be
performed on a long-term or a short-term. As stated above the purpose here is to predict
short-term variations.

Clustering techniques such as Self Organizing Maps (SOMs) will be tested in order
to subdivide the input space such as to compress traffic flow monitoring information. A
SOM is an unsupervised machine learning method often used for statistical data analysis
and data clustering. This type of artificial neural network was first described by Teuvo
Kohonen (see [29]). In essence, SOMs map the input space to a lower-dimensional
space (projection on the target space) which is easier to comprehend. This mapping is
made such that it preserves the statistical structure of the input space and in addition
preserves certain topological properties of the input space. More information about this
can be found in [29].

Support Vector Machines (SVMs) and Support Vector Regression (SVR) techniques
will be tested as supervised learning methods for predicting the class or the exact num-
ber of the bitrate increase of traffic flow aggregates (time series prediction). Support
Vector techniques project data into a high dimensional space by the use of (possibly

7The earliest recovery time for a flow is when it is the last flow in an update quantum having no earlier
update quantums.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 33

non-linear) basis functions. In the projected space these techniques search for the sep-
arating hyperplane that maximizes the margin between instances of the classes of the
classification problem. In case the space is not separable, the concept of soft-margins
extends the applicability of the approach. Only support vectors, vectors that are on the
edge of class separation within a predefined margin, determine the final SVM config-
uration. Similarly in the context of regression, those (support) vectors within a tube
of predefined margin, determine the configuration of the SVR. More technical details
about SVMs and SVR can be found in [30] and [31].

Reservoir Computing will be tested as a supervised learning technique for predicting
the class or the exact number of the bitrate increase of traffic flow aggregates (time series
prediction). RC projects the input space on a high dimensional space represented by a
recurrent network (the reservoir). Supervision happens by learning a (typically linear)
combination of the reservoir signals to be mapped to the target values (labels). More
details about RC can be found in [32].

4.1.3 Implementation

Input The machine learning component involved with optimizing the router update
process requires the following data in order to function adequately. These data are
extracted from the captured IP packets:

• timestamp of the packet: the time at which the monitoring point captured the
packet

• the packet size (in bytes)

• the IP source and destination address extracted from the IP header

• the protocol field extacted from the IP header

• the Time-To-Live-field (TTL) extracted from the IP header

• the TCP source and destination port number (UDP source and destination port
number) extracted from the TCP (UDP) header

• the TCP flags extracted from the TCP header

Output The machine learning component will try to minimize the packet loss by ei-
ther:

1. Perform a prediction on the estimated bitrate per traffic flow aggregate. In this
case the predictions will be either made by means of a classification (integer
value) or by an absolute estimate (real value, see previous sections).

2. Return a suggestion regarding both:

(a) the order of the traffic flow aggregates to be updated (traffic flow aggregate
sequence)

(b) the size and the order of the update quantums and the corresponding traffic
flow aggregates (sequence of sets of traffic flow aggregates)

4.1.4 Experimentation

Performance objectives and evaluation criteria The performance of several tech-
niques is primarily measured in terms of decrease in packet loss (see 4.1.1). In order to
be able to evaluate the performance of different machine learning techniques for time
series prediction or bitrate trend prediction of traffic flow aggregates (Section 4.1.2), the
following error measures are used:

• (regularized) Mean Square Error (MSE):

MSE(reg) =

∑n(prediction− target)2

n
(+modelcomplexitypenalty)

• Mean Absolute Error (MAE):

MAE =

∑n |prediction− target|
n

• Pearson’s Correlation coefficient (R):

R =
Cov(prediction, target)

V ar(prediction)V ar(target)

• Signal-to-noise ratio (SNR):

SNR =
E(prediction2)

V ar(error)

• Variance-to-noise ratio (VNR):

V NR =
V ar(prediction)

V ar(error)

The Mean Absolute Deviation (MAD) between several sample sets will be used as an
additional indication on stability of the techniques.

Methodology: Scenarios and Tools The router update process itself is simulated in
a custom C++ environment which is able to take into account the given input variables
such as to evaluate the resulting packet loss and needed recovery time for a given packet
trace (PCAP-file) of an IP router as available by the MAWI working group ([33]).
For evaluating the machine learning techniques mentioned in Section 4.1.2, MATLAB
is used in combination with available toolboxes (Neural Networks, Statistics, System
Identification, e.o.) and libraries (e.g. LIBSVM).

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

D
e
c
re

a
s
e
 i
n
 p

a
c
k
e
t
lo

s
s
 (

p
e
rc

e
n
ta

g
e
)

Batch size (prefixes in batch)

sorted F_n vs. unsorted F_n (fixed batch)
optimized strategy vs. unsorted F_n (variable batch)
optimized strategy vs. unsorted F_n (variable batch)

Figure 4.4: Decrease in packet loss vs. (minimal) quantum size

Experimental results Optimizing the quantum size and the update order of the update
process has shown to enable significant decreases in packet loss during the switchover
process of an IP router. The gain of sorting the traffic flow aggregates and/or using a
heuristic for optimizing the number of prefixes in a quantum dynamically is shown in
Figure 4.4. Further results can be found in [7].

Future Work Currently, the gain of using SOMs, SVMs, SVR or Reservoir Comput-
ing is being evaluated.

4.2 Data mining with OSPF updates to identify shared
risk link group (SRLG)

4.2.1 Formalization of the technical problem

From section 4.1, we know that LS updates are used to notify state changes in the
link connectivity for a router with its adjacent node or network. We also know how the
local RIB and FIB entries are updated with the re-computation of the shortest path tree
once a link failure is notified through LS update. However, in a network there might
exist shared risk link group (SRLG), i.e., set of links whose failure occurs simultane-
ously. For example two separate logical links might share the same physical link or fiber
optic cable (both links share the same risk). Therefore, any form of cable cut for that
particular physical link may manifest two simultaneous link failures and eventually the
two links are part of the same SRLG ([34], [35], [36]). Identification of SRLGs in the
network topology reduces the failure recovery time and therefore total amount of packet
losses ([34], [35], [36]). This is because, otherwise, each link failure within an SRLG

will introduce a separate failure recovery process. The proposed probabilistic model
does not assume that single link failures account for 100 percent of the failure cases
but that some link failures are resulting from occurrences of events affecting more than
one link (i.e. typical occurring for links sharing a common risk). The problem here thus
consist in inferring from the observation from a minimal set of topological changes (link
state updates) whether they affects a single link or a set of links including that link. For-
mally, this means that observing a topological change for link X can either mean link X
might have failed independently of link Y or that Link Y might have also failed knowing
that X failed (or the other way around depending on the observation sequence) without
having received the topology update for link Y. Thus for a router, if the member links of
an SRLG are known, it can locally infer the probabiliy of failure of other member links
of that particular SRLG by observing a sample of the topology updates resulting from
the common failure. Hence, the router can perform the shortest path re-computation
once for all possible simultaneous failure scenarios and update the corresponding RIB,
FIB entries in a single round instead of repeatedly invoking the same process for each
individual failure.

Therefore, detection and identification of SRLG has become an important aspect of
network protection and restoration. There exist several methods for SRLG detection
and identification as well as association of SRLGs (e.g. shared risk link grouping tech-
nique [37] [38]). However, the methods investigated so far are dependent on underlying
physical network, e.g., optical network and requires cross layer information transfer
among the network nodes. The process eventually complicates the routing protocol and
waste network bandwidth for SRLG exploration. Instead, in this particular use case, we
propose a novel methodology to use machine learning technique to detect and identify
SRLGs in a network. In our proposed scheme, we investigate the LS updates and the
correlation among themselves to learn about the possibility of the existence of SRLGs
in the network and their identification. The process requires no knowledge about the
physical topology and does not inject any control traffic in the network. Our method
requires only a machine learning engine (MLE) in the router which passively gathers
information from OSPF traffic (LS updates in particular). The Machine Learning En-
gine (MLE) runs an online training algorithm that progressively learns (i.e., detects and
identify) about the existing SRLGs in the network. The MLE unit then informs the
router information base about its findings and help router to identify SRLG failure sce-
narios in order to take appropriate protection measure.

4.2.2 Machine learning technique/algorithm used

There are two distinctive phases for our proposed algorithm as follows:

1. Learning Phase: we use statistical method to train the MLE regarding SRLGs.
We introduce a modified Bayesian network ([39], [40]) for training. The following
example describes the method in detail. We assume a simple network as shown in Fig.
4.5.

Suppose a particular node observes the following LS update pattern given in Fig.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 37

Figure 4.5: Example network with links A, B, ..., I

Figure 4.6: LS update pattern with respect to time

4.6 where each of the arrow indicates an LS update corresponding to a particular link
failure.

It is clear from Fig. 4.6 that some of the LS updates can be grouped together, which
indicates with a certain probability that they may topological information they describe
forms a common SRLG. However, we have to keep in mind that a certain number of
links may form the same SRLG irrespective of their LS update arrival order. Also same
group may contain multiple SRLG that happened to occur simultaneously. Moreover,
same link may be a member of multiple different SRLG. Our statistical machine learn-
ing algorithm should be able to address all of these above described problems. For this
purpose, we introduce an adaptive hierarchical Bayesian tree (AHBT) for learning the
existence of SRLGs.

In the initial phase, we assume none of the links forms any SRLG (except their own
SRLG). Also each of the links forms a unique node in the Bayesian tree shown in Fig.
4.7. Every node in the Bayesian tree is associated with a counter that stores the number
of occurrence for the associated link. We assign a time threshold (refer Fig. 4.5) to
group LS updates. Each group has a unique position in the Bayesian tree hierarchy.
Groups with 2 links are positioned in the second tier as shown in Fig. 4.2.2. Similarly
groups with 3 links are placed in tier 3 (refer Fig. 4.2.2)) and so on.

There are two types of transition possible from each node in the tree.

The tree nodes are associated with transition probability. A transition from a node to
itself and a transition from a node to its parent. The transition probabilities are computed
using the counters from the associated nodes. The update of the transition probabilities
are shown in Fig. 4.7. Here the transitions from A to AB and B to AB are treated
separately. However, ordered pair AB and BA is merged into the same group [A, B].
In the learning phase, whenever a group is identified, it is placed in the appropriate
hierarchy of the Bayesian tree and all its associated children’s transition probability, as
well as the counters get updated.

[]

[]

[]

Figure 4.7: AHBT - Example machine learning steps for SRLG

2. Decision making Phase: In this phase a threshold value is assigned for deci-
sion making (pth). For a given observation A, probability that ABC forms a SRLG is
computed as follows:

p(ABC/A) = p(A→ AB)p(AB → ABC) + p(A→ AC)p(AC → ABC)

Similarly p(AB/A) and p(AC/A) is also computed. If p(ABC/A) > pth then
links A,B and C are considered to form an SRLG. Otherwise if p(AB/A) > pth but
p(ABC/A) < pth then links A and B are assumed to be within same SRLG.

The information identifying the SRLG then be transferred to the routing engine for
pruning the topological database before re-computation of the RIB entries. The cor-
responding data structure includes the list of links associated with a unique identifier.
Further modification: Our proposed scheme works fine if the time threshold for group-
ing LS updates is optimal. Determining optimal time threshold is extremely difficult.
We aim to improve the process by computing the transition probabilities as a dependent
variable which varies with the correlation between inter arrival times (a) between same
links and (b) between different links as shown in Fig 4.8.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 39

Figure 4.8: Inter arrival time depiction

Chapter 5

Profile-based accountability

5.1 Formalization of the technical problem

In this section, we discuss the role of the profile-based accountability use case within
the context of congestion and fairness. In this context, profile-based accountability
focuses on a local approach to subscriber accountability. Similar to [41] and [43], the
proposed approach goes beyond individual flows by tracing subscriber traffic rates and
by characterizing them into account the local congestion the network incurs. Different
from [41] and [43] is that we look on the local level rather than on the Internet-wide
level. As a result, we are less concerned with the assumptions needed for an Internet-
wide solution (e.g., re-ECN). Instead focus on what can be derived from the locally
available information instead of considering an ideal solution is available. Our approach
consists in monitoring the aggregated traffic of individual users/subscribers over time
and congestion created by these users/subscribers. The accumulated information of
monitoring serves as input to a machine learning algorithm.

The aim of profile-based accountability is to infer the demand subscribers are re-
questing from the network, so that the network resources can be fairly allocated and
accountability properly imposed respecting the contract subscribers have with their op-
erator. There are two major tasks expected from the machine learning system, which
will define two types of output, one for the profile learning stage and the second for the
profile prediction stage, or in our case the profile classification stage. Profile learning
refers to the process of defining or categorizing profiles. Each profile indicates spe-
cific network traffic behavior associated with the usage and demand on the network
resources. Profile prediction refers to the classification process of users according to the
learned profiles. The output of this stage should be a classification decision to one of
the possible classes.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 41

5.2 Machine Learning

Profile-based accountability is divided into two parts, profiles can categorize sub-
scribers or profiles can be modelled to characterize actions. Subscriber profiles char-
acterize the household network resource usage pattern. Action profiles (computed with
respect of subscriber profiles) defines the behavior on a restricted set of activity a sub-
scriber undertakes within a certain period of time.

For this purpose, two distinct machine learning techniques are considered. A clus-
tering technique based on the Fuzzy K-Mean algorithm is used to detect and identify
commonalities in users/subscribers actions (unsupervised learning). A Hidden Markov
Model (HMM) is learned for the supervised classification of subscribers/users (super-
vised learning).

5.2.1 Fuzzy K-Mean

Fuzzy clustering algorithms are mathematical models for detecting similarities be-
tween elements of a group of objects. Information about the objects to be analyzed is
input to the algorithm in form of d-dimensional vectors. The vector represents a partic-
ular class of object which has as its components d features of the objects. The output of
the algorithm yields data vectors that are assigned to the same cluster centers.

Let X = {x1, . . . , xn} be a set of n vectors in Rd representing the data. A fuzzy
clustering of X into K clusters consists of functions {u1, . . . , uc} where ui : X → [0, 1]
and

∑c
i=1 ui(x) = 1, for all x ∈ X . These functions are called membership functions

which has value between 0 and 1. The Fk-M algorithm is designed to produce a fuzzy
clustering in the same way as the K-Means algorithm is meant to produce hard clusters,
through the minimization of the objective function:

∑
i

∑
k

(uik)m |xk − vi|2

where uik is the value of the ith membership function on the kth data point xk. The
vectors {v1, . . . , vc} are the clusters centers. In order to minimize the objective function,
the cluster centers and membership functions are designated so that high memberships
occur for points close to the corresponding cluster centers. The minimization of the
objective functions leads to the following set of equations

vi =

∑
k(uik)mxk∑

k(uik)m

and

uik =

(
1

|xk−vi|2

)1/(m−1)

∑
i

(
1

|xk−vi|2

)1/(m−1)

There is no closed form solution for these equation but they serve as the basis for an
interactive procedure which converges to a local minimum for the objective function.
Clustering technique has being successfully applied for flow and network application
identification [44], [45], [46].

5.2.2 Hidden Markov Model

Hidden Markov Model (HMM) is a type of finite state machine having a set of initial
state probabilities (π), transition probabilities (A), hidden states (Q), output probabili-
ties (B), and output alphabet or observations (O). An HMM model is said to be a triple
λ = (A,B, π) whereas the states Q, and outputs O are understood and each states
produces an output with a certain probability (B).

The definition of HMM in terms of this triple is:

• A is the probability that the next state is qj given that the current state is qi. Thus,
A = {aij = P (qi at t+ 1|qi at t)}, where P (a|b) is the conditional probability
of a given b, t ≥ 1 is the time, and qi ∈ Q.

• B is the probability that the output is is ok given that the current state is qi. For-
mally, B = {bik = P (ok|qi)}, where ok ∈ O.

• Π = {pi = P (qi at t = 1)} gives the initial probabilities.

Three canonical problem are associated to the understanding of how HMM operates
and its application as a supervised machine learning technique.

1. Given the observation sequenceO = {O1, O2, . . . , OT} and the model parameters
λ = (A,B, π), compute the probability of a particular output sequence P (O|λ).
This problem is solved by the Forward and Backward algorithms.

2. Given the observation sequence and the model parametersO = {O1, O2, . . . , OT}
and the model parameters λ = (A,B, π), find the most likely sequence of states
Q = {q1, q2, . . . , qT}, which could have generated a given output sequence. This
is solved by the Viterbi algorithm and posterior decoding.

3. Given an output sequence, find the most likely model parameters λ = (A,B, π)
and output probabilities P (O|λ). The solution is given by the Baum-Welch algo-
rithm.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 43

Figure 5.1: Structure of the D-ITG modules and flow operation

The solutions of these problems are at the core of HMM as a machine learning
method. Mathematical details of the HMM, demonstrating the solution of this problem
and how they can be applied to be used as a supervised learning techniques can be found
in the literature [47], including application to network problems [48].

5.3 Implementation

The initial phase of the profile based accountability relies on simulations to vali-
date the dual approach of classifying action profiles and identifying subscribers profiles
(described in D21). Traffic is generated using the D-ITG traffic generator (see). It is
generated from one server (ITGSend) toward a receiver server (ITGRecv), which in its
turns sends a logging record towards a third server (ITGLog). This logging server is
necessary due to the amount of traffic being simulated and the huge processing power
required by the receiving server if it had to both receive the incoming traffic and log the
flows.

This approach splits the whole problem in two parts one which requires unsuper-
vised machine learning technique and the other that requires supervised learning. Ini-
tially, we modeled several distinct action profiles. Each profile consist of several flows
generated according to some random process, for example, some long TCP and UDP
flows or some sequence of several short TCP flows. Action profiles by definition repre-
sent a short time-sliced network behavior of a subscriber, several action profiles are si-
multaneous generated on the same network connection between ITGSend and ITGRecv,
under different network condition, i.e., congested or not congested. Once this first part
of the simulation is done an analysis of the log files, irrespective to each subscriber “net-
work action” is analyzed and features extracted. The features should reflect the actions
and network impact of the protocols and flows, measurements such as number of flows,
average bit rate of the flows, or of the time-sliced connection, average packet jitter,
packet drop, congestion or no congestion, etc. These measurements are used as input
of a feature vector, which should characterized the network “action” the subscriber is

Figure 5.2: Diagram of the subscribers’ action profiles over time

Figure 5.3: Diagram of the subscribers’ profiles inferred from a time sequence of action
profiles

undertaking during a defined time-sliced. Using clustering algorithm described on the
last session, learning and classification of action profile are obtained, which will be used
as the base to build a time series of action undertaking by subscribers.

A time sequence of action profiles by different uses over a period of time, possible
weekly, will ultimately determine the subscribers’classification in our modeling. The
definition of subscribes will depend on an expert and from the objectives network op-
erators have, to create a basic criteria for profile to be learned and classified. In this
simulation phase, we will synthetically create different time sequences, which will rep-
resent distinct subscribers to be used as a base for a learning set. Thus, using supervised
machine learning algorithm such as HMM, a complete learning, classification and test
cycle can be created to validate the overall modeling for profile-based accountability.

5.4 Experimentation

Focus is on characterization of the interaction between users and the network load,
diversified on either short-term actions (resulting in action profiles) and aggregated,
long-term subscriber behavior (resulting in subscriber profiles). Final goal (scenario 2

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 45

Figure 5.4: Experimental setup

in deliverable D2.1) is an online assignment of profiles to user actions and user sub-
scriptions, by applying machine learning techniques to the packet stream associated
with single flows, multiple flows, single users and multiple users. This also enables
to define and validate feedback mechanisms to enforce users to remain within a given
profile. As an intermediary goal until September 2009, we set as scope an offline, cen-
tralized, batch-mode version of our PBA-engine, without feedback, corresponding to
scenario 1 in deliverable D31.

5.4.1 Performance Objectives and Evaluation Criteria

Traffic Emulating Service: We rely on D-ITG (http://www.grid.unina.it/software/ITG/)
for traffic emulation of subscribers and background traffic. We run D-ITG on our lab
network of four machines.

• Inputs: D-ITG ASCII scripts, representative for a wide variety of user behavior:
different number of flows, UDP vs. TCP, bursty ON-OFF activity vs. continuous
flow activity, and random vs. non-random start and stop of new flows. Number
of users is expanded beyond the number of IP addresses in the lab by means of
port number. The scripts are composed manually, but a program to generate/parse
randomized scripts can be developed if useful.

• Outputs: Actual traffic over the lab network

5.4.2 Methodology: Scenarios and Tools

The list of other tools it interacts with: Currently, we experiment with the native
D-ITG monitoring tool. Drawback of this is that it has no means of adaptive sampling.

In scenario 2, we envisage an active monitoring and sampling version of this, ideally by
utilizing the results of the experimental use case (a1) of adaptive traffic sampling.

Traffic Sampling Service: For D-ITG-generated traffic, a D-ITG logging tool (IT-
GLog) is available. The resulting log file contains timing and packet size information
for all packets, and can be further parsed with the D-ITG decoder tool (ITGDec), to
isolate the features we focus on: bandwidth, packet delay, jitter and packet loss.

• Inputs: D-ITG logging files, in a D-ITG-native format.

• Outputs: CSV (comma separated value) ASCII files, with per-flow statistics on
the desired time slot scale.

The list of other tools it interacts with: ITGSend and ITGRecv at input, output
via ITGDec.

5.4.3 Experimental Results

Profile Learning and Classification:

• Inputs: CSV-files with statistics. Envisaged machine learning algorithm in this
step is clustering. Statistics include bandwidth, packet delay, jitter and packet loss
on a fixed time slot scale. Possibly, feedback can be given to adopt an optimal
timescale.

• Outputs: Mapping of given scripts and users to different clusters.

5.4.4 Future Works

Perform the whole experimentation based on real traffic data.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 47

Chapter 6

Recommendations for integration into
common ECODE architecture

We will first summarize the ECODE Architecture described in Deliverable D2.1 and
depicted in figure 6.1. Then we will describe how we currently view the mapping of all
the use cases described so far onto this general architecture.

6.1 ECODE Functional Architecture Reminder

A standard router comprises ”Forwarding engine” (as part of its forwarding plane)
and a ”Routing engine” (as part of its control plane). The forwarding engine includes a
packet processor and a ”Forwarding Information Base”. The routing engine includes a
routing information processor and ”Routing Information Base”.

The RIB refers to the ”Routing Information Base”. It stores the routes and the
metrics associated with those routes to particular network destination prefixes. This
information contains the topology of the network immediately around the router.

The FIB refers to the ”Forwarding Information Base”. It is used to find the proper
interface to which the input interface should send a packet to be transmitted by the
router. The FIB is constructed based on the RIB and according to policies defined by
the operator. It is optimized for fast lookup of destination addresses.

In addition to the Forwarding, and Routing engines, ECODE introduces the Machine
Learning Engine (MLE) and the Monitoring Engine (ME):

The ”Machine Learning Engine” (MLE): part of the control plane, aims as pro-
cessing by means of learning methods, the input from the network (via forwarding and
control components) to subsequently decide on forwarding and routing execution.

The ”Monitoring Engine” (ME): part of the forwarding plane, aims at collecting
packet/flow/path performance information such as delay, bandwidth, packet loss, etc.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 49

Figure 6.1: ECODE component framework

Once collected, this information is buffered in the Monitoring Data Register part of the
Reporting module (see also Fig.3). The ME parameters such as the sampling parameters
(e.g. sampling rate), and filtering parameters are controlled by the Machine Learning
Engine (MLE) by means of the ME Controller. The functional description of the ME is
further detailed here below.

The interaction between the various engines is performed through dedicated inter-
faces. We consider four distinct interfaces:

• RF (for Routing Ð Forwarding): through this interface, the Routing and For-
warding engines can communicate with each other and exchange information if
requires.

• CR (for Cognitive Ð Routing): through this interface, the MLE may retrieve data
from the Routing Engine and communicate to the Routing Engine the decision it
takes.

• CF (for Cognitive Ð Forwarding): similarly to the CR, the MLE may retrieve
data from the Forwarding Engine and communicate to the Forwarding Engine the
decision it takes.

• CM (for Cognitive - Monitoring): through this interface, the MLE may retrieve
path performance information from the ME.

Monitoring, Routing, and/or Forwarding Engines provide raw and/or pre-processed
data to the Machine Learning Engine (MLE) through the CM, CR, and CF interface,
respectively. The reason for optional pre-procesing is to prevent potential MLE pro-
cessing overloading. Based on this data and machine learning methods as well as prior
knowledge such as learned rules and/or decisions, the MLE takes decisions and sends
them back to the Routing, Forwarding, and Monitoring Engines. Note that the learned

methods are stored in a particular structure called LM (for Learning Methods). The so-
called prior knowledge and learned models are stored in the ”Knowledge Information
Base” (KIB) used, in the ECODE architecture, to store prior knowledge such as learned
models or decisions. The ”Observation Information Base” (OIB) stores bounded se-
quences of observations that can be accessed by means of the Register (RL) or loaded
(on-demand) by the Processing.

Fig. 6.1 provides a representation of the interface between forwarding and routing
engines and the Translator function of the Machine Learning Engine (MLE). The inter-
face CM is here depicted for a single line card comprising a set of N interfaces/ports, n
of them (n =< N) being equipped with a Monitoring Point (MP). Thus, a node may com-
prise multiple instances of the CM interface. Fig.1 provides also a view of the elements
composing the Machine Learning Engine (MLE). As illustrated, the latter comprises
four different modules: the ”Translator”, the ”Representation”, the ”Processing”, and
the ”Distribution”.

The ”Translator” comprises a.o. a syntax function that converts the data received
from the Monitoring, Routing, and/or Forwarding engines into uniformly formatted
data.

The ”Representation” takes the formatted data (received from the Translator) and
transforms it into various tagged observations describing states, events, or conditions.
A "tag" can for instance include the "originating plane", the "type of information", the
"time stamp/interval", etc. In other words, the Representation function provides inputs
to the machine learning algorithms. A "tag" is assigned to these observations to selec-
tively call adequate their processing by the processor. Indeed, from the training data set,
the processor selects inductively a learning algorithm to derive the target function. In
other words, the representation function acts as pre-processor that provides the actual
input to the machine learning processing. The reason is to prevent overloading the pro-
cessor with the large amount data that is received from the Routing, Forwarding, and
Monitoring Engines (even if the latter is making use of sampling, filtering, etc).

The ”Processing” includes the Learner and the Performer (functions) and associated
registers. The ”Learner” makes use of observations for training purposes and produces
a learned hypothesis h defined as the approximation of the target function representing
the prediction rule to be learned. The ”Performer” uses unseen observations and deter-
mines if the hypothesis ”h” is a good learned approximation of a target function and
the complexity ”c(h)”. Taking into account the trade-off between underfit and overfit,
once the learned hypothesis is sufficiently accurate over the test data set (test error),
the learned rules can then be used to produce decisions. Decisions are taken by apply-
ing the learned rules to new incoming observations by combining the obtained decision
with previously reached decisions as well as objectives (functional and performance)
and constraints (both technical and non-technical).

Decisions and learned rules are then provided to the Distribution module that aims
at disseminating them. This dissemination might be local (i.e., inside the router) or
external (i.e., between various routers). If the dissemination is local, the decisions are
sent to the Translator so that they are correctly formatted for the Routing, Forwarding,

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 51

Figure 6.2: IDIPS integration into the ECODE architecture

or Monitoring Engines. The Translator is also in charge of sending this formatted output
to the Routing, Forwarding, Monitoring Engines through the dedicated interface (CR,
CF, or CM). Learned rules are locally stored in the KIB. On the other hand, if the
dissemination is external, the decisions and learned rules are sent to others Machine
Learning Engines through an extra CC interface (not shown on fig. 6.1).

6.2 Use case b1: Path availability

6.2.1 Intelligent Path Ranking Using IDIPS

In this section, we describe how IDIPS, as defined in Chapter 2, will be integrated
withing the ECODE architecture. This is depicted in Fig. 6.2.

Clearly, the PIC is located between the forwarding plane of a router, where MPs are
implemented and the Machine Learning Engine. Indeed, MPs send the path information
they measured to the Machine Learning Engine where the Transaltor is in charge of
converting the output format provided by the MPs into a specific format that can be
used by the Machine Learning Engine.

The KB, that stores path attributes is, actually, part of the Observation Information
Base (OIB) within the Machine Learning Engine. Indeed, the OIB stores bounded se-
quences of observations that can be used for processing.

The various models used for preciting path performance metrics discussed in Chap-
ter 2 are stored in the Learned Models (LM), within the Machine Learning Engine.

Finally, the DE corresponds to the Processing in the Machine Learning Engine.

6.2.2 Delay estimation and delay-based path selection and routing

The Internet Coordinate System presented in chapter 3 can be seen as a special rout-
ing engine, located in the RE block of figure 6.1. Indeed, routing entities that exchange
their coordinates and measure delays between themselves to converge towards their own
coordinates, participate in a routing protocol, whose outcome not the building of a graph
topology, but instead the embedding/positioning of routing entities in a metric space. On
this basis, delays between any node pair can be estimated. In the best case, for some
node pairs only, the estimation is superseeded by an actual delay measurement. This
happens between pairs of nodes that are neighbours in the ICS.

The machine learning techniques presented in section 3.2 have been used to derive
a rule used by ICS nodes to improve their neighbour selection and thereby improve the
ICS precision and stability. At this stage this rule, derived by this off-line centralized
learning method, is basically integrated in the ICS, and therefore also part of the Routing
Engine.

The routing shortcut discovery based on the ICS, explained in section 3.3.2 is also
part of the Routing Engine. Classical shortest paths (e.g., Dijkstra) are here substituted
by the criteria we have designed to find shortcuts, based on all estimated delays and
some measured delays.

6.3 Use case b2: Routing resilience

6.3.1 Minimizing packet loss during re-routing

The functionality to implement the strategies as defined for this use case assume the
following overall procedure within the ECODE component framework. A continuous
process ensures that packet data is entering the monitoring engine which on its turn
sends the required fields to the responsible module in the Machine Learning Engine.
This is illustrated by the dashed lines and numbers roman capitals in Figure 6.3:

1. Incoming packets arriving on forwarding plane I/O

2. Selected data is forwarded from the Monitoring Point to the Machine Learning
Engine (MLE). The data is structured as a set of timestamped ([IP Source Ad-
dress], IP Destination Address) pairs, where the IP Source address is optional,
together with a set of attributes Attributes. The input data can be seen as the set
timestamp, ([IP SA], IP DA), Attributes.

3. The MLE builds up its model using this data: data is first processed by the trans-
lator (format translation) and then semantically processed by the representation
module before being processed as observations by the MLE processor.

Besides this continuous process, the router update process is a triggered process
following the following event chain:

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 53

I
II

1

2

3

5

4

III

6

7

Figure 6.3: Integration of the router update process in the ECODE component frame-
work

1. A (local) network failure is detected by the forwarding plane (remote failure de-
tection will be covered when distributed machine learning techniques will be in-
vestigated)

2. The failure event triggers a change in the local neighbor relationship table over
which routing adjacencies are established (maintained as part of the routing en-
gine (RE)

3. The RE requests the MLE to provide the information required for the routing
engine to perform preferential sequence during the RIB/FIB update process (e.g.
prediction data)

4. The MLE processes the request

5. The MLE provides the RE with the needed information (the structure of the cor-
responding data is a preferential selection criteria per (set of) prefix).

6. The RE performs the RIB/FIB entries update process using the received informa-
tion

7. The RE sends the renewed FIB entries to the forwarding engine

The above process is documented in Figure [7] with the full lines and arabic num-
bers. Note that step 3 to 5 can also happen by a process where the MLE continuously
pushes information towards the RE.

6.3.2 Data mining with OSPF updates to identify shared risk link
group (SRLG)

The functionality to implement the MLE algorithm as defined above assumes the
following overall procedure within the ECODE component framework. Refer Figure
6.3 of Section 4.1 for further details:

1. OSPF LS updates are filtered and reports delivered to the translator.

2. MLE processes the sequence of LS updates after syntaxic translation and semantic
transformation into events processable

3. The MLE processor which runs the Bayesian tree to identify SRLG (sequences
can be stored in the OIB for subsequent processing).

4. The MLE stores the outcome and associated report in MLE database (KIB).

This is for the learning phase. For decision making, routing engine requests for
SRLG identification from MLE with input as a single recently observed LS update.
MLE runs the decision making algorithm and returns report to RIB.

6.4 Use case b3: Profile-based accountability

The functionality to implement the profiling strategies as defined for this use case
assumes the following overall procedure within the ECODE component framework.
The model consists in deriving during the learning phase the characteristic volume of
congestion created per subscriber so as to derive congestion profiles. Conformance ver-
ification of this profile is then performed by comparing the deviation of the measured
volume of congestion compared to the acceptable volume of congestion as determined
(learned) for the subscriber profile to which the corresponding user belongs. The ratio
between the observed (measured) and the classification value with respect to the con-
gestion volume is a (per-user) accountability metric.

A continuous process ensures that number of packets marked as congested can be
recorded per (source,destination). This assumes that the "forwarding plane" is able to
detect congestion occurrences (on output I/Os) and mark packets accordingly (ECN bits,
for instance).

1. Packets marked as "congested" are instantaneously accounted in number of bytes.

2. Selected records are forwarded to the Machine Learning Engine (MLE). These
records are structured as a set of timestamped (IP Source Address, [IP Desti-
nation Address]) pairs, where the IP destination address is optional, together
with a set of attributes, Attributes, including the "number of bytes of conges-
tion" generated by IP source address(es) identifying a specific subscriber. The

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 55

input data to the Machine Learning Engine (MLE) is thus structured as the set
{timestamp, (IP SA, [IP DA]), Attributes}.

3. The MLE builds up its learning model using this data:

• Records are first processed by the translator (format translation) and then seman-
tically processed by the representation module before being processed as obser-
vations by the MLE processor. Typically, a set of records have been registered for
a given "source IP address".

• At the profile learning stage the processor learns a classification model (whose
classes define congestion profiles) based on the measured congestion volume per
subscriber, identified by (a set of) IP source addresses. At the execution stage, the
classification model is used to determine how subscriber profiles/users account for
the congestion they created, i.e., how they deviate from the acceptable congestion
level (associated to their profile) over time. This allows to pin down specific sub-
scribers without having to maintain all "congestion states" and how they account
for the explicit (or implicit) congestion feedback they receive from the network.

Note that various actions could be subsequently executed from the decision taken
following the above identification. One can distinguish between local and remote ac-
tions/executions:

• Local actions depend mainly on the local forwarding plane capabilities. Exam-
ples includes: a node implementing DiffServ may be re-parametrized including
the token bucket rate r and the burst size b of meters (that measure the traffic tem-
poral properties, e.g., rate, for conformance against pre-defined traffic profile), the
drop precedence bit marker thresholds, etc. but also enforce different condition-
ing actions that may be applied to in-profile packets and out-of-profile packets.
Nodes implementing an Active Queue Management (AQM) scheme could also
be re-parametrized, e.g., in case of Random Early Detection (RED), the average
queue length and the min/max queue length threshold, and in case of Weighted
RED (WRED), the respective weights in addition to the queue lengths parameters.
Note that self-tunable/self-adaptable AQM (+ ECN) has already been subject to
in-depth investigation. As such the proposed technique provides for retro-action
detection/identification-analsys-decision-execution loop based on machine learn-
ing and can simply re-use one of these techniques.

• Remote actions (triggered locally) can take various forms. They can involve noti-
fication/tracing to the source of traffic (traceback) and/or trigger of the providers’
accounting system.

Chapter 7

Conclusion

In this deliverable we have described the research work achieved so far in task 3.2
that is dedicated to the experimentation on the technical objective 2 (TO2) address-
ing machine learning techniques for path availability estimation (chapters 2 and 3), for
improving network recoverability and resilience (chapter 4), and profile-based account-
ability (chapter 5).

In each chapter, the problem addressed by the use case is first formalized. Then the
relevant machine learning (ML) techniques are briefly presented and used to provide
appropriate solutions. The proposed ML-based algorithms are evaluated by simulations.
The simulated codes used for this purpose constitute first high-level prototypes.

Chapter 6 explains how each use case fits in the general ECODE architecture pre-
sented in deliverable D2.1.

The main contributions can be summarized as follows:

• Measuring a path performance (as shown in chapter 2) according to one or sev-
eral metrics, such as delay or bandwidth, is becoming more and more popular
for applications. However, constantly probing the network is not suitable. To
make measurements more scalable, the notion of clustering has emerged. We
demonstrate in [2] that clustering can limit the measurement overhead in such a
context without loosing too much accuracy. The paper shows that measurement
reduction can be observed when vantage points collaborate and use clustering to
estimate path performance. The paper also shows how effective is the overhead
reduction and what is the impact in term of measurement accuracy. In addition, in
[1], we demonstrate how to reduce the path performance metric measurements by
applying machine learning techniques. We express the problem as a time series
regression problem and propose several adaptative models for predicting those
metrics. Based on a large dataset collected through the PlanetLab testbed, we
evaluate our models and demonstrate their efficiency.

• When network nodes run an ICS (as shown in chapter 3, the measured distances
(typically delays) between some of pairs of nodes are embedded into a metric

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 57

space (or coordinate system). When the coordinates of the nodes are known,
the prediction of the distances (delays) between two nodes is a straightforward
application of a distance function where no explicit communication between them
is required. This significantly reduces the overhead of active probing and largely
improves the efficiency of the network. We have first used Machine Learning
techniques to improve the accuracy of an ICS [3, 4, 5]. We derive automatically a
criterion that can be used by nodes to better select their neighbours in the ICS and
thereby reduce the impact of Triangular Inequality Violations (TIVs), which are
detrimental to an ICS. The knowledge of estimated delays between nodes can also
be useful to select better paths for real-time applications. We have proposed some
methods that rely on the nodes running an ICS to detect useful routing shortcuts
in networks [6].

• The IP router RIB/FIB update process was formalized (as shown in chapter 4)
to enable optimizing it in terms of packet loss upon failures (chapter 4). Traffic-
informed router update models were evaluated using strategies with either fixed or
optimized variable sizes for the update-distribution batches. The resulting models
were implemented in a simulation environment and were quantitatively charac-
terized. Depending on the context, we showed that the formulated strategies can
result into a decrease of packet loss of 10 to 80 percent using small router pro-
cess quantums [7]. Because a traffic-informed router update models can only be
effective if the traffic statistics that are being used are accurate, the work is be-
ing extended such as to predict the short-term trend of aggregated network traffic
flows. Currently, experiments are being carried out using Self-Organizing Maps
(SOMs), Feed-Forward Neural Networks (FFNN) and Support Vector Regression
(SVR) techniques.

• IP routers exchange link state advertisements (LSAs) to know about network fail-
ures and to initiate recalculation of routing paths in case of network failures (see
chapter 4). Path computation and routing table updates takes time and induce
packet loss in the network. On the other hand, by design, IP networks have Shared
Risk Link Groups (SRLGs) that might give several failure indications. Current
OSPF protocol cannot identify SRLGs and separately responds to each failure
notification, which leads to higher packet losses. Within the ECODE project
framework, a process is being developed to identify the SRLGs from the time
sequences of LSAs that arrive in the process of failures. Here a router identi-
fies an SRLG locally and reduces protection switching time by simultaneously
updating the forwarding table for all the links that fail under the same SRLG. A
simple Bayesian network based approach to model the SRLG identification have
been developed. The Bayesian network based model includes a state transition
approach that can perform online learning and infers probabilistic determination
procedure for SRLGs. Further the study of the covariance among the LSA inter
arrival times are being considered to enhance the probability based state space
Bayesian network model and to include temporal data to infer the state transition
probabilities. A realistic simulation scenario using GTNetS is being carried out.

• The aim of profile-based accountability (chapter 5) is to infer the demand sub-
scribers are requesting from the network, so that the network resources can be

fairly allocated and accountability properly imposed respecting the contract sub-
scribers have with their operator. There are two major tasks expected from the
machine learning system, which will define two types of output, one for the pro-
file learning stage and the second for the profile prediction stage, or in our case
the profile classification stage. Profile learning refers to the process of defining
or categorizing profiles. Each profile indicates specific network traffic behavior
associated with the usage and demand on the network resources. Profile pre-
diction refers to the classification process of users according to the learned pro-
files. The output of this stage should be a classification decision to one of the
possible classes. Two distinct machine learning techniques are considered. A
clustering technique based on the Fuzzy K-Mean algorithm is used to detect and
identify commonalities in users/subscribers actions (unsupervised learning). An
Hidden Markov Model (HMM) is learned for the supervised classification of sub-
scribers/users (supervised learning).

• As shown in chapter 6, the functionalities of all the use cases fit well into the
current ECODE architecture, which confirms its suitability.

Our future work will be organized along two axes:

• For each use case, we will continue to investigate machine mearning techniques
to further improve our results.

• More work is also required to produce prototype codes for all use cases and inte-
grate them into the common ECODE architecture. When these real implementa-
tions will be up and running, a second stage of tests and validations will be carried
out to check whether the results promised by simulations are confirmed.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 59

Bibliography

[1] Narino Mendoza J.P., Donnet B., and Dupont P. A comparative study of path
performance metrics predictors. In Workshop on Advances in Learning for
Networking, in conjunction with ACM SIGMETRICS/Performance 2009, In Proc.
of ACM SIGMETRICS/Performance 2009, Seattle, USA, 15 June 2009, 2009.

[2] Donnet B. Saucez D. and Bonaventure O. On the impact of clustering on measure-
ment reduction. In Proc. of IFIP/TC6 Networking 2009, 12-14 May 2009, Aachen,
Germany, LNCS 5550, Springer., 2009.

[3] Y. Liao, M. A. Kaafar, B. Gueye, F. Cantin, P. Geurts, and G. Leduc. Detecting
triangle inequality violations in internet coordinate systems by supervised learn-
ing. In Proc. IFIP Networking Conference, LNCS 5550, pages 352–363, Aachen,
Germany, May 2009.

[4] M. A. Kaafar, F. Cantin, B. Gueye, and G. Leduc. Detecting triangle inequality
violations for internet coordinate systems. In Proc. International Workshop on the
Network of the Future, Dresden, Germany, June 2009.

[5] Y. Liao and G. Leduc. Triangle inequality violation avoidance in internet coor-
dinate systems. In Trilogy Future Internet Summer School, Louvain-la-Neuve,
Belgium, August 2009. Poster.

[6] Cantin F., Gueye B., Kaafar M.A., and Leduc G. Overlay routing using coordinate
systems. In Poster at ACM Co-Next 2008, Madrid, Spain, ACM Press., 2008.

[7] Wouter Tavernier, Dimitri Papadimitriou, Didier Colle, Mario Pickavet, and Piet
Demeester. Optimizing the ip router update process with traffic-driven updates. In
DRCN 2009, Washington D.C., 2009.

[8] V. Bui, W. Zhu, A. Pescape, and A. Botta. Long horizon end-to-end dealy
forecasts: a multi-step-ahead hybrid approach. In Proc. IEEE Symposium on
Computers and Communications (ISCC), July 2007.

[9] M. Yang, J. Ru, H. Chen, A. Bashi, and N. S. V. Rao. Predicting Internet end-
to-end delay: a statistical study. Annual Review of Network Management and
Security, 58, April 2006.

[10] M. Yang, J. Ru, X. R. Li, H. Chen, and A. Bashi. Predicting Internet end-to-end
delay: A multiple-model approach. In Proc. IEEE INFOCOM, April 2006.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 61

[11] G.E.P. Box and G. Jenkins. Time series analysis, forecasting and control. Holden-
Day, Incorporated, 1990.

[12] S.S. Soliman and M.D. Srinath. Continuous and discrete signals and systems.
Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1998.

[13] Z. Ghahramani and G. E. Hinton. Parameter estimation for linear dynamical sys-
tems. CRG-TR 92-2, University of Toronto, Department of Computer Science,
February 1996.

[14] R.E. Kalman. A new approach to linear filtering and prediction problems. Journal
of Basic Engineering, 82(1):35–45, 1960.

[15] K.-R. Müller, A. J. Smola, R. Rötsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik.
Predicting time series with support vector machines. In Proc. 7th International
Conference on Artificial Neural Networks (ICANN), October 1997.

[16] J.D. Hamilton. Time Series Analysis. Princeton University Press, 1994.

[17] D. Saucez, B. Donnet, L. Iannone, and O. Bonaventure. Interdomain traffic en-
gineering in a locator/identifier separation context. In Proc. Internet Network
Management Workshop (INM), October 2008.

[18] Y. Zhang and N. Duffield. On the constantcy of Internet path properties. In Proc.
ACM Workshop on Internet Measurement (IMW), October 2001.

[19] L.J. Tashman. Out-of-sample tests of forecasting accuracy: an analysis and review.
International Journal of Forecasting, 16(4):437–450, 2000.

[20] J.G. De Gooijer and R.J. Hyndman. 25 years of time series forecasting.
International journal of forecasting, 22(3):443–473, 2006.

[21] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network
coordinate system. In Proc. ACM SIGCOMM, Portland, OR, USA, August 2004.

[22] G. Wang, B. Zhang, and T. S. E. Ng. Towards network triangle inequality violation
aware distributed systems. In Proc. the ACM/IMC Conference, pages 175–188,
San Diego, CA, USA, October 2007.

[23] B. Deng et X. Li X. Wang, Y. Chen. Nonlinear modeling of the internet delay
structure. In Proc. ACM CoNEXT Student Workshop, Madrid, Spain, December
2008.

[24] John M. McQuillan, Ira Richer, and Eric C. Rosen. An overview of the new rout-
ing algorithm for the arpanet. SIGCOMM Comput. Commun. Rev., 25(1):54–60,
1995.

[25] Paolo Narváez, Kai-Yeung Siu, and Hong-Yi Tzeng. New dynamic algorithms for
shortest path tree computation. IEEE/ACM Trans. Netw., 8(6):734–746, 2000.

[26] Pierre Francois, Clarence Filsfils, John Evans, and Olivier Bonaventure. Achieving
sub-second igp convergence in large ip networks. ACM SIGCOMM Computer
Communication Review, 35(3):33–44, July 2005.

[27] Daniel P. Bovet and Marco Cesati. Understanding the linux kernel. O’Reilly, o’
edition, d 2003.

[28] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, February 1993.

[29] T. Kohonen. Self-organization and associative memory: 3rd edition. Springer-
Verlag New York, Inc., New York, NY, USA, 1989.

[30] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[31] Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex J. Smola, and
Vladimir Vapnik. Support vector regression machines. In NIPS, pages 155–161,
1996.

[32] David Verstraeten, Benjamin Schrauwen, Michiel D‘Haene, and Dirk Stroobandt.
An experimental unification of reservoir computing methods. Neural Networks,
20(3):391–403, 4 2007.

[33] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at the
wide project. In ATEC ’00: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 51–51, Berkeley, CA, USA, 2000. USENIX
Association.

[34] X. Pan and G. Xiao. Heuristics for diverse routing in wavelength-routed networks
with shared risk link groups. Photonic Network Communications, (11):29–38,
2006.

[35] Dahai Xu, Yizhi Xiong, Chunming Qiao, and Guangzhi Li. Trap avoidance and
protection schemes in networks with shared risk link groups. Journal of Lightwave
Technology, 21(11):2683.

[36] Lei Guo, Hongfang Yu, and Lemin Li. A new shared-path protection algorithm
under shared risk link group constraints for survivable wdm mesh networks. Optics
Communications, 256(21):285–295, 2005.

[37] Inference of shared risk link groups. http://www.cse.wustl.edu/
~jain/oif/ftp/oif2001.066.1.pdf.

[38] B.Rajagopalan. Link Bundling in Optical Networks. Internet-Draft draft-rs-
optical-bundling-01.txt, Internet Engineering Task Force, October 2000. Work
in progress.

[39] Irad Ben-Gal. Bayesian networks. John Wiley and Sons.

[40] David Heckerman. Tutorial on Learning with Bayesian Networks. MIT Press,
1998.

[41] Briscoe B. Flow rate fairness: dismantling a religion. ACM SIGCOMM Computer
Communication Review, vol. 37(no. 2), April 2007.

FP7-223936 ECODE Project - Deliverable D.3.4 - Design and Implementation of Technical Objective 2 Page 63

http://www.cse.wustl.edu/~jain/oif/ftp/oif2001.066.1.pdf
http://www.cse.wustl.edu/~jain/oif/ftp/oif2001.066.1.pdf

[42] Briscoe B. A fairer, faster internet protocol. IEEE Spectrum, 45(no. 12):42–47,
December 2008.

[43] Jacquet A., Briscoe B., and Moncaster T. Freedom to use the internet re-
source pool. Proceedings of the 2008 Workshop on Re-Architecting the Internet
(ReArch’08), November 2008.

[44] Bernaille L., Teixeira R., and Salamatian K. Early application identification. In
Proceedings of ACM CoNEXT 2006, pages 1–12, Berkeley, CA, USA, 2006.

[45] Li W. and Moore A. A machine learning approach for efficient traffic classification.
In In Proceedings of IEEE MASCOTS 2007, 2007.

[46] McGregor A., Hall M., Lorier P., and Brunskill J. Flow clustering using machine
learning techniques. In Proceedings of PAM 2004, 2004.

[47] Rabiner Lawrence R. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 1989.

[48] Wright C., Monrose F., and Masson G. Hmm profiles for network traffic classi-
fication. In Proceedings of the Workshop on Visualization and Data Mining for
Computer Security (VizSEC/DMSEC), October 2004.

	Introduction
	Scope of Deliverable
	Structure of Document

	Intelligent Path Ranking Using IDIPS
	Problem Formalization
	Machine Learning Techniques
	Standard Models
	ARMA Model
	State Space Model
	Support Vector Regression (SVR) Model
	Joint Support Vector Regression

	Model Update Methods
	State Space Model
	ARMA Model
	SVM Model

	IDIPS Implementation
	Path Information Collector
	Knowledge Base
	Decision Engine

	Experimentation
	Data Collection
	Crossvalidation
	Error Measurements
	Results

	Future Work

	Delay estimation and delay-based path selection and routing
	Problem Formalization
	Improving the ICS
	Finding routing shortcuts

	Machine Learning techniques/algorithms used
	Methodology: Scenarios and Tools for Learning
	Learnt model and discriminative variables
	Evaluation of the learnt model

	Implementation
	Improving the ICS
	Finding routing shortcuts

	Experimentation and evaluation
	Improved ICS
	Finding shortcuts

	Conclusion and Future Work

	Routing resilience use cases
	Minimizing packet loss during re-routing
	Formalisation of the technical problem
	Machine Learning techniques/algorithms used
	Implementation
	Experimentation

	Data mining with OSPF updates to identify shared risk link group (SRLG)
	Formalization of the technical problem
	Machine learning technique/algorithm used

	Profile-based accountability
	Formalization of the technical problem
	Machine Learning
	Fuzzy K-Mean
	Hidden Markov Model

	Implementation
	Experimentation
	Performance Objectives and Evaluation Criteria
	Methodology: Scenarios and Tools
	Experimental Results
	Future Works

	Recommendations for integration into common ECODE architecture
	ECODE Functional Architecture Reminder
	Use case b1: Path availability
	Intelligent Path Ranking Using IDIPS
	Delay estimation and delay-based path selection and routing

	Use case b2: Routing resilience
	Minimizing packet loss during re-routing
	Data mining with OSPF updates to identify shared risk link group (SRLG)

	Use case b3: Profile-based accountability

	Conclusion
	References

